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Fourier Transform of Anisotropic Hardy Spaces Associated with Ball

Quasi-Banach Function Spaces and Its Applications to

Hardy–Littlewood Inequalities

Chaoan Li, Xianjie Yan and Dachun Yang *

Abstract Let A be a general expansive matrix and X be a ball quasi-Banach function space

on Rn, whose certain power (namely its convexification) supports a Fefferman–Stein vector-

valued maximal inequality and the associate space of whose other power supports the bound-

edness of the powered Hardy–Littlewood maximal operator. Let HA
X

(Rn) be the anisotropic

Hardy space associated with A and X. The authors first prove that the Fourier transform of

f ∈ HA
X

(Rn) coincides with a continuous function F on Rn in the sense of tempered distri-

butions. Moreover, the authors obtain a pointwise inequality that the function F is less than

the product of the anisotropic Hardy space norm of f and a step function with respect to the

transpose matrix of the expansive matrix A. Applying this, the authors further induce a higher

order convergence for the function F at the origin and give a variant of the Hardy–Littlewood

inequality in HA
X

(Rn). All these results have a wide range of applications. Particularly, the

authors apply these results, respectively, to classical (variable and mixed-norm) Lebesgue

spaces, Morrey spaces, Lorentz spaces, Orlicz spaces, Orlicz-slice spaces, and local general-

ized Herz spaces and, even on the last five function spaces, the obtained results are completely

new.

1 Introduction

In 1972, Fefferman and Stein [24] introduced a famous problem, that is, what is the characteri-

zation of the Fourier transform f̂ of a distribution f from the classical Hardy space Hp(Rn). Recall

that, in 1974, Coifman [19] characterized f̂ via the entire function of exponential type for n = 1,

where f ∈ Hp(R) with p ∈ (0, 1]. Since then, many researchers investigated the characterization

of f̂ with the distribution f from Hardy spaces with n ≥ 2; see, for instance, [7, 22, 25, 56]. In

particular, Taibleson and Weiss [56] proved that, for any given p ∈ (0, 1], the Fourier transform

of f ∈ Hp(Rn) coincides with a continuous function F in the sense of tempered distributions and
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there exists a positive constant C, independent of f and F, such that, for any x ∈ Rn,

(1.1) |F(x)| ≤ C‖ f ‖Hp(Rn)|x|n( 1
p
−1).

This further implies the following generalization of the Hardy–Littlewood inequality that

(1.2)

[∫

Rn

|x|n(p−2) |F(x)|p dx

]1/p

≤ C‖ f ‖Hp(Rn),

where C is a positive constant independent of f and F (see [55, p. 128]).

Recently, Sawano et al. [53] originally introduced the ball quasi-Banach function space X and

the associated Hardy space HX(Rn). In their article [53], by assuming that the Hardy–Littlewood

maximal operator satisfies a Fefferman–Stein vector-valued inequality on certain power (namely

its convexification) of X and the powered Hardy–Littlewood maximal operator is bounded on

the associate space of certain power of X, Sawano et al. established various maximal function

characterizations and several other characterizations of HX(Rn), respectively, in terms of atoms,

molecules, and Lusin area functions. Indeed, the real-variable theory of the Hardy space HX(Rn)

associated with the ball quasi-Banach function space X provides an unified framework of various

types of Hardy spaces, which includes many important Hardy spaces that have been studied before,

such as classical Hardy spaces, mixed-norm Hardy spaces, variable Hardy spaces, and Orlicz–

Hardy spaces. For more recent developments on this topic, we refer the reader to [13, 28, 53, 57,

62, 66]. Based on the recent rapid developments of the theory of the Hardy space HX(Rn) and

the aforementioned works on the characterization of the Fourier transform of the classical Hardy

space Hp(Rn) or their generalization, very recently, Huang et al. [36] showed that both (1.1) and

(1.2) hold true in HX(Rn).

On the other hand, in 2003, motivated by the application of discrete groups of dilations in

wavelet theory, Bownik [4] introduced and investigated the anisotropic Hardy space H
p

A
(Rn) with

p ∈ (0,∞), where A is a general expansive matrix on Rn, which includes both the classical Hardy

space and the parabolic Hardy space of Calderón and Torchinsky [12] as special cases. Since then,

various variants of classical Hardy spaces over anisotropic Euclidean spaces (see, for instance, [5,

6, 15, 16, 17, 35, 38, 43, 44, 47]) or, more generally, over spaces of homogeneous type in the sense

of Coifman and Weiss [20, 21] (see, for instance, [18, 26, 27, 29, 30]) have been introduced and

their real-variable theories have been well developed. In 2013, Bownik and Wang [7] generalized

inequalities (1.1) and (1.2) to the anisotropic Hardy space H
p

A
(Rn) with the known characterization

of H
p

A
(Rn). Furthermore, Liu [44] pointed out that (1.1) and (1.2) also apply to the setting of the

variable anisotropic Hardy space H
p(·)
A

(Rn). Later, Liu et al. [46] proved that (1.1) and (1.2) hold

true for the anisotropic mixed-norm Hardy space H
~p
A
(Rn). Recall that the anisotropic Hardy space

HA
X

(Rn) associated with both A and X was first introduced and studied by Wang et al. [59], in

which Wang et al. characterized HA
X

(Rn) in terms of maximal functions, atoms, finite atoms, and

molecules. Moreover, the variable anisotropic Hardy space H
p(·)
A

(Rn) and the anisotropic mixed-

norm Hardy space H
~p
A
(Rn) are the special cases of HA

X
(Rn) with X := Lp(·)(Rn) or X := L~p(Rn),

respectively. Based on these results, it is natural to ask whether (1.1) and (1.2) also hold true for

HA
X

(Rn). The goal of this article is to give a positive answer to this question.



Fourier Transform of Anisotropic Hardy Spaces 3

Let A be a dilation and X a ball quasi-Banach function space on Rn. In this article, under the

assumptions that the Hardy–Littlewood maximal operator satisfies some Fefferman–Stein vector-

valued inequality on certain power of X, the powered Hardy–Littlewood maximal operator is

bounded on the associate space of certain power of X, and the X-quasi-norm of characteristic

functions of anisotropic balls has a lower bound, we get rid of the dependence on the concavity of

‖ · ‖X. With these mild assumptions and two uniform pointwise estimates we show that the Fourier

transform f̂ of f ∈ HA
X

(Rn) coincides with a continuous function F on Rn in the sense of tempered

distributions and prove that an inequality similar to (1.1) also holds true for any f ∈ HA
X

(Rn).

Furthermore, applying this and a technical inequality about the value of the Fourier transform of

atoms, we further conclude a higher order convergence of the continuous function F at the origin

and then show that an inequality similar to (1.2) holds true for HA
X

(Rn), which is a variant of the

Hardy–Littlewood inequality in HA
X

(Rn). It is remarkable that the results obtained in this article

have a wide range of generality because ball quasi-Banach function spaces include lots of impor-

tant function spaces. In particular, when these results are applied to classical Lebesgue spaces,

variable Lebesgue spaces, and mixed-norm Lebesgue spaces, the obtained conclusions coincide

with the known ones; morever, when these results are applied, respectively, to Morrey spaces,

Lorentz spaces, Orlicz spaces, Orlicz-slice spaces, and local generalized Herz spaces, the ob-

tained conclusions are completely new. More applications of these results to new-found function

spaces are quite possible.

The remainder of this article is organized as follows.

In Sect. 2, we first present definitions of expansive matrices, ball quasi-Banach function spaces,

and anisotropic Hardy spaces associated with both A and X; see Definitions 2.1, 2.4, and 2.10

below.

The aim of Sect. 3 is to prove the main result (see Theorem 3.1 below), that is, the Fourier

transform f̂ of f ∈ HA
X

(Rn) coincides with a continuous function F in the sense of tempered dis-

tributions. In order to achieve this, we apply Lemmas 3.5 (some subtle estimates on derivatives of

the Fourier transform of the dilation of atoms) and 3.7 (some exquisite relations between the Eu-

clidean norm and the step homogeneous quasi-norm ρ under consideration) to establish a uniform

pointwise estimate for atoms (see Lemma 3.6 below). Then Theorem 3.1 is proved by this and

some real-variable characterizations from [59], especially its atomic decompositions. Morever,

we apply these results, respectively, to classical Lebesgue spaces, variable Lebesgue spaces, and

mixed-norm Lebesgue spaces and show that the obtained conclusions coincide with the known

ones [see Remark 3.2(i)-(iv) below]. At the same time, we obtain a pointwise inequality of the

continuous function F, which suggests that the anisotropic mixed-norm atoms must possess van-

ishing moments in some sense [see Remark 3.2(v) below].

Applying the Fourier transform, in Sect. 4, we present some further applications of Theorem

3.1. First, we prove that the above function F has a higher order convergence at the origin (see

Theorem 4.1 below). Second, we show that the term

|F(·)|min

{[
ρ∗(·)

]1− 1
p− −

1
q0
+(d+1) ln λ−

ln b ,
[
ρ∗(·)

]1− 2
q0
+(d+1) ln λ−

ln b

}

is Lq0 (Rn)-integrable and a positive constant multiple of the anisotropic Hardy space norm of f can

uniformly controll this integral. Thus, we extend the Hardy–Littlewood inequality to the setting of

anisotropic Hardy spaces associated with ball quasi-Banach function spaces (see Theorem 4.2 be-
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low). Further, we apply these results, respectively, to classical Lebesgue spaces, variable Lebesgue

spaces, and mixed-norm Lebesgue spaces and prove that the obtained conclusions coincide with

the known ones (see Remark 4.3 below).

As applications, in Sect. 5, we apply Theorems 3.1, 4.1, and 4.2, via verfiying all the neces-

sary assumptions, to five concrete examples of ball quasi-Banach function spaces, namely Mor-

rey spaces (see Subsection 5.1 below), Lorentz spaces (see Subsection 5.2 below), Orlicz spaces

(see Subsection 5.3 below), Orlicz-slice spaces (see Subsection 5.4 below), and local Herz–Hardy

spaces (see Subsection 5.5 below). In particular, we show that the anisotropic local Herz space

is a quasi-banach function space (see Theorem 5.16 below). Through both a boundedness crite-

rion of sublinear operators on anisotropic local generalized Herz spaces and its simple corollary

(see Lemma 5.18 and Corollary 5.20 below), we prove that the anisotropic local generalized Herz

space supports a Fefferman–Stein vector-valued maximal inequality and the associate space of

whose other power supports the boundedness of the powered Hardy–Littlewood maximal operator

(see Lemma 5.17 and Theorem 5.21 below).

At the end of this section, we make some conventions on notation. Let N := {1, 2, . . .}, Z+ :=

N ∪ {0}, Zn
+ := (Z+)n, and 0 be the origin of Rn. For any multi-index α := (α1, . . . , αn) ∈ Zn

+ and

any x := (x1, . . . , xn) ∈ Rn, let |α| := α1 + · · · + αn, ∂α := ( ∂∂x1
)α1 · · · ( ∂∂xn

)αn , and xα := x
α1

1
· · · xαn

n .

We denote by C a positive constant which is independent of the main parameters involved, but

may vary from line to line. We use C(α,... ) to denote a positive constant depending on the indicated

parameters α, . . . . The symbol f . g means f ≤ Cg. If f . g and g . f , we then write f ∼ g.

If f ≤ Cg and g = h or g ≤ h, we then write f . g = h or f . g ≤ h. For any q ∈ [1,∞], we

denote by q′ its conjugate index, that is, 1/q + 1/q′ = 1. For any x ∈ Rn, we denote by |x| the

n-dimensional Euclidean metric of x. If E is a subset of Rn, we denote by 1E its characteristic

function and by E∁ the set Rn \ E. For any r ∈ (0,∞) and x ∈ Rn, we denote by B(x, r) the ball

centered at x with the radius r, that is, B(x, r) := {y ∈ Rn : |x− y| < r}. For any ball B, we use xB to

denote its center and rB its radius and we denote by λB for any λ ∈ (0,∞) the ball concentric with

B having the radius λrB. We also use ǫ → 0+ to denote ǫ ∈ (0,∞) and ǫ → 0. Let X and Y be two

normed vector spaces, respectively, with the norm ‖ · ‖X and the norm ‖ · ‖Y ; then we use X ֒→ Y

to denote X ⊂ Y and there exists a positive constant C such that, for any f ∈ X, ‖ f ‖Y ≤ C‖ f ‖X . At

last, when we prove a theorem or the like, we always use the same symbols in the wanted proved

theorem or the like.

2 Preliminaries

In this section, we first recall some symbols and concepts on dilations (see, for instance, [4, 53])

as well as ball quasi-Banach function spaces (see, for instance, [53, 57, 58, 62, 65]). We begin by

recalling the concept of expansive matrices from [4].

Definition 2.1. A real n × n matrix A is called an expansive matrix (shortly, a dilation) if

min
λ∈σ(A)

|λ| > 1,

here and hereafter, σ(A) denotes the set of all eigenvalues of A.
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Let A be a dilation and

b := | det A|,(2.1)

where det A denotes the determinant of A. Then it follows from [4, p. 6, (2.7)] that b ∈ (1,∞). By

the fact that there exists an open and symmetry ellipsoid ∆, with |∆| = 1, and an r ∈ (1,∞) such

that ∆ ⊂ r∆ ⊂ A∆ (see [4, p. 5, Lemma 2.2]), we find that, for any k ∈ Z,

(2.2) Bk := Ak∆

is open, Bk ⊂ rBk ⊂ Bk+1, and |Bk| = bk. For any x ∈ Rn and k ∈ Z, an ellipsoid x + Bk is called a

dilated ball. In what follows, we always let B be the set of all such dilated balls, that is,

(2.3) B := {x + Bk : x ∈ Rn, k ∈ Z}

and let

(2.4) τ := inf
{
l ∈ Z : rl ≥ 2

}
.

Let λ−, λ+ ∈ (0,∞) satisfy that

1 < λ− < min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} < λ+.

We point out that, if A is diagonalizable over R, then we may let

λ− := min{|λ| : λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}.

Otherwise, we may choose them sufficiently close to these equalities in accordance with what we

need in our arguments.

The following definition of the homogeneous quasi-norm is just [4, p. 6, Definition 2.3].

Definition 2.2. A homogeneous quasi-norm, associated with a dilation A, is a measurable mapping

̺ : Rn → [0,∞) such that

(i) ̺(x) = 0⇐⇒ x = 0, where 0 denotes the origin of Rn;

(ii) ̺(Ax) = b̺(x) for any x ∈ Rn;

(iii) there exists an A0 ∈ [1,∞) such that, for any x, y ∈ Rn,

̺(x + y) ≤ A0 [̺(x) + ̺(y)].

In the standard Euclidean space case, let A := 2 In×n and, for any x ∈ Rn, ̺(x) := |x|n. Then

̺ is an example of homogeneous quasi-norms associated with A on Rn. Here and thereafter, In×n

always denotes the n × n unit matrix and | · | the Euclidean norm in Rn.

For a fixed dilation A, by [4, p. 6, Lemma 2.4], we introduce the following quasi-norm which

is used throughout this article.
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Definition 2.3. Define the step homogeneous quasi-norm ρ on Rn, associated with the dilation A,

by setting

ρ(x) :=


bk if x ∈ Bk+1 \ Bk,

0 if x = 0,

where b is the same as in (2.1) and, for any k ∈ Z, Bk the same as in (2.2).

Then (Rn, ρ, dx) is a space of homogeneous type in the sense of Coifman and Weiss [20], where

dx denotes the n-dimensional Lebesgue measure. For more studies on the real-variable theory of

function spaces over spaces of homogeneous type, we refer the reader to [8, 9, 10, 11, 39, 40, 41,

60, 61, 63].

Throughout this article, we always let A be a dilation in Definition 2.1, b the same as in (2.1), ρ

the step homogeneous quasi-norm in Definition 2.3, B the set of all dilated balls in (2.3), M (Rn)

the set of all measurable functions on Rn and, for any k ∈ Z, Bk the same as in (2.2). Now, we

recall the definition of ball quasi-norm Banach function spaces (see [53]).

Definition 2.4. A quasi-normed linear space X ⊂M (Rn), equipped with a quasi-norm ‖ · ‖ which

makes sense for the whole M (Rn), is called a ball quasi-Banach function space if it satisfies

(i) for any f ∈M (Rn), ‖ f ‖X = 0 implies that f = 0 almost everywhere;

(ii) for any f , g ∈M (Rn), |g| ≤ | f | almost everywhere implies that ‖g‖X ≤ ‖ f ‖X;

(iii) for any { fm}m∈N ⊂ M (Rn) and f ∈ M (Rn), 0 ≤ fm ↑ f as m → ∞ almost everywhere

implies that ‖ fm‖X ↑ ‖ f ‖X as m→ ∞;

(iv) 1B ∈ X for any dilated ball B ∈ B.

Moreover, a ball quasi-Banach function space X is called a ball Banach function space if it

satisfies:

(v) for any f , g ∈ X, ‖ f + g‖X ≤ ‖ f ‖X + ‖g‖X;

(vi) for any given dilated ball B ∈ B, there exists a positive constant C(B) such that, for any

f ∈ X, ∫

B

| f (x)| dx ≤ C(B)‖ f ‖X .

Now, we recall the concept of the p-convexification of ball quasi-Banach function spaces, which

is a part of [53, Definition 2.6].

Definition 2.5. Let X be a ball quasi-Banach function space and p ∈ (0,∞). The p-convexification

Xp of X is defined by setting

Xp :=
{
f ∈M (Rn) : | f |p ∈ X

}

equipped with the quasi-norm ‖ f ‖X p := ‖| f |p‖1/p
X

for any f ∈ Xp.

The associate space X′ of any given ball Banach function space X is defined as follows; see [3,

Chapter 1, Section 2] or [53, p. 9].
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Definition 2.6. For any given ball Banach function space X, its associate space (also called the

Köthe dual space) X′ is defined by setting

X′ :=

 f ∈M (Rn) : ‖ f ‖X′ := sup
g∈X, ‖g‖X=1

‖ f g‖L1(Rn) < ∞
 ,

where ‖ · ‖X′ is called the associate norm of ‖ · ‖X .

Now, we recall the concept of the Hardy–Littlewood maximal operator. In what follows, for

any given p ∈ (0,∞] and any given subset E ⊂ Rn, let L
p

loc
(E) denote the set of all p-order

locally integrable functions on E. Recall that the Hardy–Littlewood maximal operator M( f ) of

f ∈ L1
loc

(Rn) is defined by setting, for any x ∈ Rn,

M( f )(x) := sup
k∈Z

sup
y∈x+Bk

1

|Bk|

∫

y+Bk

| f (z)| dz = sup
x∈B∈B

1

|B|

∫

B

| f (z)| dz,(2.5)

where B is the same as in (2.3) and the supremum in the second equality is taken over all the

balls B ∈ B. For any given α ∈ (0,∞), the powered Hardy–Littlewood maximal operatorM(α) is

defined by setting, for any f ∈ L1
loc

(Rn) and x ∈ Rn,

M(α)( f )(x) :=
{M (| f |α) (x)

} 1
α .

Throughout this article, we also need the following fundamental assumptions about the bound-

edness ofM on the convexification of the given ball quasi-Banach function space and the bound-

edness of certain powered ofM on the associate space of its convexification.

Assumption 2.7. Let X be a ball quasi-Banach function space. Assume that there exists a p− ∈
(0,∞) such that, for any p ∈ (0, p−) and u ∈ (1,∞), there exists a positive constant C, depending

on both p and r, such that, for any { fk}∞k=1
⊂M (Rn),

∥∥∥∥∥∥∥∥


∞∑

k=1

[M ( fk)
]u



1
u

∥∥∥∥∥∥∥∥
X

1
p

≤ C

∥∥∥∥∥∥∥∥


∞∑

k=1

| fk |u


1
u

∥∥∥∥∥∥∥∥
X

1
p

.

In what follows, for any given p− ∈ (0,∞), let

(2.6) p := min{p−, 1}.

Assumption 2.8. Let p− ∈ (0,∞) and X be a ball quasi-Banach function space. Assume that there

exists a θ0 ∈ (0, p), with p in (2.6), and a p0 ∈ (θ0,∞) such that X1/θ0 is a ball Banach function

space and, for any f ∈ (X1/θ0 )′,

∥∥∥M((p0/θ0)′)( f )
∥∥∥

(X1/θ0 )′
≤ C‖ f ‖(X1/θ0 )′ ,

where C is a positive constant, independent of f , and 1
p0/θ0
+ 1

(p0/θ0)′ = 1.
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Next, recall that a Schwartz function is a function ϕ ∈ C∞(Rn) satisfying that, for any k ∈ Z+
and any multi-index α ∈ Zn

+,

‖ϕ‖α,k := sup
x∈Rn

[ρ(x)]k |∂αϕ(x)| < ∞.(2.7)

Denote by S(Rn) the set of all Schwartz functions, equipped with the topology determined by

{‖ · ‖α,k}α∈Zn
+,k∈Z+ . Then S′(Rn) is defined to be the dual space of S(Rn), equipped with the weak-∗

topology. For any N ∈ Z+, let

SN(Rn) :=
{
ϕ ∈ S(Rn) : ‖ϕ‖α,k ≤ 1, |α| ≤ N, k ≤ N

}
,

equivalently,

ϕ ∈ SN(Rn) ⇐⇒ ‖ϕ‖SN (Rn) := sup
|α|≤N

sup
x∈Rn

max{1, [ρ(x)]N }|∂αϕ(x)| ≤ 1.

Now, we recall the definitions of the anisotropic non-tangential maximal function and the

anisotropic non-tangential grand maximal function from [59, Definition 2.15]. In what follows,

for any ϕ ∈ S(Rn) and k ∈ Z, let ϕk(·) := b−kϕ(A−k·).

Definition 2.9. Let ϕ ∈ S(Rn) and f ∈ S′(Rn). The anisotropic non-tangential maximal function

Mϕ( f ), with respect to ϕ, is defined by setting, for any x ∈ Rn,

Mϕ( f )(x) := sup
k∈Z, y∈x+Bk

| f ∗ ϕk(y)| .

Moreover, for any given N ∈ N, the anisotropic non-tangential grand maximal function MN( f ) is

defined by setting, for any x ∈ Rn,

(2.8) MN( f )(x) := sup
ϕ∈SN (Rn)

Mϕ( f )(x).

We present the definition of HA
X

(Rn) from [59] as follows. In what follows, for any α ∈ R, we

denote by the symbol ⌊α⌋ the largest integer not greater than α.

Definition 2.10. Let A be a dilation and X a ball quasi-Banach function space satisfying both

Assumption 2.7 with p− ∈ (0,∞) and Assumption 2.8 with the same p−, θ0 ∈ (0, p), and p0 ∈
(θ0,∞), where p is the same as in (2.6). Assume that

N ∈ N ∩
[⌊(

1

θ0
− 1

)
ln b

ln(λ−)

⌋
+ 2,∞

)
.

The anisotropic Hardy space HA
X,N(Rn), associated with both A and X, is defined by setting

HA
X,N(Rn) :=

{
f ∈ S′(Rn) : ‖MN( f )‖X < ∞

}
,

where MN( f ) is the same as in (2.8). Moreover, for any f ∈ HA
X,N(Rn), let

‖ f ‖HA
X,N

(Rn) := ‖MN( f )‖X .
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Let A be a dilation and X the same as in Definition 2.10. In the remainder of this article, we

always let

NX, A :=

⌊(
1

θ0
− 1

)
ln b

ln(λ−)

⌋
+ 2.

Remark 2.11. (i) As was mentioned in [59, Remark 2.17(i)], the space HA
X, N(Rn) is inde-

pendent of the choice of N as long as N ∈ N ∩ [NX, A,∞). Thus, in what follows, when

N ∈ N ∩ [NX, A,∞), we always write HA
X,N(Rn) simply by HA

X
(Rn).

(ii) If A := 2 In×n, then HA
X

(Rn) coincides with HX(Rn) which was introduced by Sawano et al.

in [53].

3 Fourier Transforms of HA
X(Rn)

Let A be a dilation, X a ball quasi-Banach function space satisfying some mild assumptions,

and f ∈ HA
X

(Rn). In this section, we aim to study the Fourier transform of f . Recall that, for any

ϕ ∈ S(Rn), its Fourier transform, denoted by F (ϕ) or ϕ̂, is defined by setting, for any ξ ∈ Rn,

F (ϕ)(ξ) = ϕ̂(ξ) :=

∫

Rn

ϕ(x)e−2πıx·ξ dx,

here and thereafter, ı :=
√
−1 and, for any x := (x1, . . . , xn), ξ := (ξ1, . . . , ξn) ∈ Rn, x·ξ :=

∑n
i=1 xiξi.

For any f ∈ S′(Rn), f̂ is defined by setting, for any ϕ ∈ S(Rn), 〈 f̂ , ϕ〉 := 〈 f , ϕ̂〉; also, for any

f ∈ S(Rn) [resp. S′(Rn)], f∨ denotes its inverse Fourier transform which is defined by setting, for

any ξ ∈ Rn, f∨(ξ) := f̂ (−ξ) [resp., for any ϕ ∈ S(Rn), 〈 f∨, ϕ〉 := 〈 f , ϕ∨〉].
Now, we present the main result of this section as follows.

Theorem 3.1. Let A be a dilation and X a ball quasi-Banach function space satisfying both As-

sumption 2.7 with p− ∈ (0,∞) and Assumption 2.8 with the same p−, θ0 ∈ (0, p), and p0 ∈ (θ0,∞),

where p is the same as in (2.6). Further assume that there exists a q0 ∈ [θ0, 1] such that:

(i) for any non-negative measurable functions { fk}∞k=1
,

∞∑

k=1

‖ fk‖
X

1
q0
.

∥∥∥∥∥∥∥

∞∑

k=1

fk

∥∥∥∥∥∥∥
X

1
q0

,(3.1)

where the implicit positive constant is independent of { fk}∞k=1
;

(ii) for any B ∈ B with B in (2.3),

(3.2) ‖1B‖X & min

{
|B|

1
q0 , |B|

1
θ0

}
,

where the implicit positive constant is independent of B.
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Then, for any f ∈ HA
X

(Rn), there exists a continuous function F on Rn such that

f̂ = F in S′(Rn)(3.3)

and there exists a positive constant C, depending only on A and X, such that, for any x ∈ Rn,

|F(x)| ≤ C‖ f ‖HA
X

(Rn) max

{[
ρ∗(x)

] 1
q0
−1
,
[
ρ∗(x)

] 1
θ0
−1

}
,(3.4)

here and thereafter, ρ∗ is defined as in Definition 2.3 with A replaced by its transposed matrix A∗.

Remark 3.2. (i) If A := 2 In×n, then Theorem 3.1 was obtained in [36, Theorem 2.1].

(ii) For any given measurable set E ⊂ Rn and any given p ∈ (0,∞), the Lebesgue space Lp(E)

is defined by setting,

Lp(E) :=

 f is measurable on E : ‖ f ‖Lp(E) :=

[∫

E

| f (x)|p dx

]1/p

< ∞
 .(3.5)

Let A be a dilation, p ∈ (0, 1), and

N ∈ N ∩
[⌊(

1

p
− 1

)
ln b

ln(λ−)

⌋
+ 2,∞

)
.

Then, by [61, Remarks 2.7(i) and 4.21(i)], we conclude that Lp(Rn) satisfies all the assump-

tions of Definition 2.10 with X := Lp(Rn), p− ∈ (0, p], θ0 ∈ (0, p−), and p0 ∈ (p,∞).

Moreover, choose q0 ∈ (p, 1]. Then it follows from (3.5) that, for any non-negative measur-

able functions { fk}∞k=1
and any B ∈ B,

∞∑

k=1

‖ fk‖
L

p
q0 (Rn)

≤
∥∥∥∥∥∥∥

∞∑

k=1

fk

∥∥∥∥∥∥∥
L

p
q0 (Rn)

and

‖1B‖Lp(Rn) = |B|
1
p > min

{
|B|

1
q0 , |B|

1
θ0

}
.

Thus, Lp(Rn) satisfies all the assumptions of Theorem 3.1 with X := Lp(Rn). In this case,

Theorem 3.1 was obtained in [7, Theorem 1].

(iii) Recall that P(Rn) is defined to be the set of all the measurable functions p(·) on Rn satisfying

0 < p̃− := ess inf
x∈Rn

p(x) ≤ ess sup
x∈Rn

p(x) =: p̃+ < ∞.

For any p(·) ∈ P(Rn), the variable Lebesgue space Lp(·)(Rn) is defined to be the set of all

the measurable functions f on Rn such that

∫

Rn

| f (x)|p(x) dx < ∞,
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equipped with the quasi-norm ‖ f ‖Lp(·)(Rn) defined by setting

(3.6) ‖ f ‖Lp(·)(Rn) := inf

λ ∈ (0,∞) :

∫

Rn

[
| f (x)|
λ

]p(x)

dx ≤ 1

 .

Denote by Clog(Rn) the set of all the functions p(·) ∈ P(Rn) satisfying the globally log-

Hölder continuous condition, that is, there exist Clog(p),C∞ ∈ (0,∞) and p∞ ∈ R such that,

for any x, y ∈ Rn,

|p(x) − p(y)| ≤
Clog(p)

log (e + 1/|x − y|)
and

|p(x) − p∞| ≤
C∞

log(e + |x|) .

Let A be a dilation and p(·) ∈ Clog(Rn) satisfy 0 < p̃− ≤ p̃+ < 1 and

N ∈ N ∩
[⌊(

1

p̃−
− 1

)
ln b

ln(λ−)

⌋
+ 2,∞

)
.

Then, by [61, Remarks 2.7(iv) and 4.21(v)], we conclude that Lp(·)(Rn) satisfies all the

assumptions of Definition 2.10 with X := Lp(·)(Rn), p− ∈ (0, p̃−], θ0 ∈ (0, p−), and p0 ∈
(p̃+,∞). Moreover, choose q0 ∈ (p̃+, 1]. On the one hand, from [64, Remark 2.1(iv)], we

deduce that, for any non-negative measurable functions { fk}∞k=1
,

∞∑

k=1

‖ fk‖
L

p(·)
q0 (Rn)

≤
∥∥∥∥∥∥∥

∞∑

k=1

fk

∥∥∥∥∥∥∥
L

p(·)
q0 (Rn)

.

On the other hand, by (3.6), we find that, for any B ∈ B,

‖1B‖Lp(·)(Rn) & min

{
|B|

1
p̃+ , |B|

1
p̃−

}
> min

{
|B|

1
q0 , |B|

1
θ0

}
.

Thus, Lp(·)(Rn) satisfies all the assumptions of Theorem 3.1 with X := Lp(·)(Rn). In this case,

Theorem 3.1 was obtained in [45, Theorem 1].

(iv) Let ~p := (p1, . . . , pn) ∈ (0,∞]n. Recall that the mixed-norm Lebesgue space L~p(Rn) is

defined to be the set of all the measurable functions f on Rn such that

‖ f ‖L~p(Rn) :=



∫

R

· · ·

∫

R

{∫

R

| f (x1, . . . , xn)|p1 dx1

} p2
p1

dx2



p3
p2

· · · dxn



1
pn

(3.7)

is finite with the usual modifications made when pi = ∞ for some i ∈ {1, . . . , n}. Let

~p ∈ (0, 1)n, p̂− := min{p1, ..., pn}, p̂+ := max{p1, ..., pn}, and

N ∈ N ∩
[⌊(

1

p̂−
− 1

)
ln b

ln(λ−)

⌋
+ 2,∞

)
.
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Then, by both [65, p. 2047] and [65, Lemmas 7.22 and 7.26], we conclude that L~p(Rn)

satisfies all the assumptions of Definition 2.10 with X := L~p(Rn), p− ∈ (0, p̂−], θ0 ∈ (0, p−),

and p0 ∈ (p̂+,∞). Moreover, choose q0 ∈ (p̂+, 1]. From (3.7) and [46, (9)], we deduce that,

for any non-negative measurable functions { fk}∞k=1
and any B ∈ B,

∞∑

k=1

‖ fk‖
L
~p

q0 (Rn)
≤ C

∥∥∥∥∥∥∥

∞∑

k=1

fk

∥∥∥∥∥∥∥
L
~p

q0 (Rn)

and

‖1B‖L~p(Rn) & min

{
|B|

1
p̂+ , |B|

1
p̂−

}
= min

{
|B|

1
q0 , |B|

1
θ0

}
.

Thus, L~p(Rn) satisfies all the assumptions of Theorem 3.1 with X := L~p(Rn). In this case,

Theorem 3.1 was obtained in [46, Theorem 3.1].

(v) As was mentioned in [36, Remark 2.1(ii)], (3.4) implies that the function f ∈ HA
X

(Rn) ∩
L1(Rn) has a vanishing moment. This illustrates the necessity of the vanishing moment of

atoms in some sense.

To prove Theorem 3.1, we need more preparations. Let A be a dilation. Recall that the dilation

operator DA is defined by setting, for any f ∈M (Rn),

DA( f )(·) := f (A·).

Then, by an elementary calculation (see also [7, (3.1)]), we find that, for any k ∈ Z, f ∈ L1(Rn),

and x ∈ Rn,

f̂ (x) = bk
(
Dk

A∗

(
F

(
Dk

A f
)))

(x).(3.8)

Next, we recall the definitions of anisotropic (X, q, d)-atoms and anisotropic atomic Hardy

spaces H
A,q,d
X,atom

(Rn) which were first introduced in [59, Definitions 4.1 and 4.2].

Definition 3.3. Let A, X, θ0, and p0 be the same as in Definition 2.10. Further assume that

q ∈ (max{p0, 1},∞] and

(3.9) d ∈
[⌊(

1

θ0
− 1

)
ln b

ln(λ−)

⌋
,∞

)
∩ Z+.

(i) An anisotropic (X, q, d)-atom a is a measurable function on Rn satisfying that

(i)1 supp (a) := {x ∈ Rn : a(x) , 0} ⊂ B, where B ∈ B and B is the same as in (2.3);

(i)2 ‖a‖Lq(Rn) ≤ |B|
1
q ‖1B‖−1

X
;

(i)3

∫
Rn a(x)xγ dx = 0 for any γ ∈ Zn

+ with |γ| ≤ d, here and thereafter, for any x :=

(x1, . . . , xn) ∈ Rn and γ := {γ1, . . . , γn} ∈ Zn
+, |γ| := γ1 + · · · + γn and xγ := x

γ1

1
· · · xγn

n .
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(ii) The anisotropic atomic Hardy space H
A,q,d
X,atom

(Rn) is defined to be the set of all the f ∈ S′(Rn)

satisfying that there exists a sequence {λ j} j∈N ⊂ C and a sequence {a j} j∈N of (X, q, d)-atoms

supported, respectively, in {B j} j∈N ⊂ B such that

f =
∑

j∈N
λ ja j

in S′(Rn) and that ∥∥∥∥∥∥∥∥∥


∑

j∈N

[ |λ j|1B j

‖1B j‖X

]θ0


1
θ0

∥∥∥∥∥∥∥∥∥
X

< ∞.

Moreover, for any f ∈ H
A,q,d
X,atom

(Rn), let

‖ f ‖
H

A,q,d
X,atom

(Rn)
:= inf

∥∥∥∥∥∥∥∥∥


∑

j∈N

[ |λ j|1B j

‖1B j‖X

]θ0


1
θ0

∥∥∥∥∥∥∥∥∥
X

,

where the infimum is taken over all the decompositions of f as above.

The following atomic characterization of HA
X

(Rn), which was established in [59, Theorem 4.3],

is needed in the proof of Theorem 3.1.

Lemma 3.4. Let A, X, q, and d be the same as in Definition 3.3. Then HA
X

(Rn) = H
A,q,d
X,atom

(Rn) with

equivalent quasi-norms.

By an argument similar to that used in proof of [7, Lemma 4], we immediately obtain the

following conclusioan.

Lemma 3.5. Let A, X, q, and d be the same as in Definition 3.3. Assume that a is an anisotropic

(X, q, d)-atom supported in x0 + Bi0 with some x0 ∈ Rn and i0 ∈ Z. Then there exists a positive

constant C such that, for any α ∈ Zn
+ with |α| ≤ d and for any x ∈ Rn,

∣∣∣∣∂α
(
F

(
D

i0
A

a
))

(x)
∣∣∣∣ ≤ C

∥∥∥∥1Bi0

∥∥∥∥
−1

X
min

{
1, |x|d−|α|+1

}
,(3.10)

where C is also independent of a.

Proof. Without loss of generality, we may assume that a is supported in Bi0 . Thus, supp (D
i0
A

a) ⊂
B0. On the one hand, by [23, (1.20)], Definition 3.3(i)3, the Taylor remainder theorem, the Hölder

inequality, and Definition 3.3(i)2, we conclude that, for any α ∈ Zn
+ with |α| ≤ d and for any

x ∈ Rn,

∣∣∣∣∂α
(
F

(
D

i0
A

a
))

(x)
∣∣∣∣ =

∣∣∣∣∣∣

∫

B0

(−2πıξ)α
(
D

i0
A

a
)

(ξ)e−2πıx·ξ dξ

∣∣∣∣∣∣(3.11)

=

∣∣∣∣∣∣

∫

B0

(−2πıξ)α
(
D

i0
A

a
)

(ξ)
[
e−2πıx·ξ − T (ξ)

]
dξ

∣∣∣∣∣∣
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.

∫

B0

|ξ||α|
∣∣∣∣a

(
Ai0ξ

)∣∣∣∣ |x|d−|α|+1 |ξ|d−|α|+1 dξ

. |x|d−|α|+1b−i0

∫

Bi0

|a (ξ) | dξ

≤ |x|d−|α|+1
∥∥∥∥1Bi0

∥∥∥∥
−1

X
,

where T (ξ) is the (d − |α|)th-order Taylor polynomial of the function ξ → e−2πıx·ξ at the origin. On

the other hand, from [23, (1.20)], the Hölder inequality, and Definition 3.3(i)2, we deduce that, for

any α ∈ Zn
+ with |α| ≤ d and for any x ∈ Rn,

∣∣∣∣∂α
(
F

(
D

i0
A

a
))

(x)
∣∣∣∣ =

∣∣∣∣∣∣

∫

B0

(−2πıξ)α
(
D

i0
A

a
)

(ξ)e−2πıx·ξ dξ

∣∣∣∣∣∣

.

∫

B0

|ξ||α|
∣∣∣∣a

(
Ai0ξ

)∣∣∣∣ dξ . b−i0

∫

Bi0

|a (ξ) | dξ

≤
∥∥∥∥1Bi0

∥∥∥∥
−1

X
,

which, combined with (3.11), further implies (3.10) and hence completes the proof of Lemma

3.5. �

Applying Lemma 3.5, we obtain the following uniform estimate for anisotropic (X, q, d)-atoms,

which plays a key role in the proof of Theorem 3.1.

Lemma 3.6. Let A, X, q, d, and θ0 be the same as in Definition 3.3. Further assume that X satisfies

(3.2) with q0 ∈ [θ0, 1]. Then there exists a positive constant C such that, for any anisotropic

(X, q, d)-atom a and for any x ∈ Rn,

∣∣∣̂a(x)
∣∣∣ ≤ C max

{[
ρ∗(x)

] 1
q0
−1
,
[
ρ∗(x)

] 1
θ0
−1

}
,(3.12)

where ρ∗ is the same as in Theorem 3.1.

The proof of Lemma 3.6 needs the following inequalities which are just [4, p. 11, Lemma 3.2].

Lemma 3.7. Let A be a dilation. Then there exists a positive constant C such that, for any x ∈ Rn,

1

C
[ρ(x)]ln(λ−)/ ln b ≤ |x| ≤ C[ρ(x)]ln(λ+)/ ln b when ρ(x) ∈ (1,∞)

and
1

C
[ρ(x)]ln(λ+)/ ln b ≤ |x| ≤ C[ρ(x)]ln(λ−)/ ln b when ρ(x) ∈ [0, 1].

Now, we give the proof of Lemma 3.6.

Proof of Lemma 3.6. Let a be an anisotropic (X, q, d)-atom supported in x0+Bi0 with some x0 ∈ Rn

and i0 ∈ Z. Without loss of generality, we may assume x0 = 0. By (3.8), Lemma 3.5 with

α = (

n times︷  ︸︸  ︷
0, . . . , 0), and (3.2), we conclude that, for any x ∈ Rn,

∣∣∣̂a(x)
∣∣∣ =

∣∣∣∣bi0
(
D

i0
A∗

(
F

(
D

i0
A

a
)))

(x)
∣∣∣∣ =

∣∣∣∣bi0F
(
D

i0
A

a
) (

(A∗)i0 x
)∣∣∣∣(3.13)
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. bi0
∥∥∥∥1Bi0

∥∥∥∥
−1

X
min

{
1,

∣∣∣(A∗)i0 x
∣∣∣d+1

}

. bi0 max

{
b
− i0

q0 , b
− i0
θ0

}
min

{
1,

∣∣∣(A∗)i0 x
∣∣∣d+1

}
.

Next, we prove (3.12) by considering two cases: ρ∗(x) ≤ b−i0 and ρ∗(x) > b−i0 .

Case 1) ρ∗(x) ≤ b−i0 . In this case, note that

ρ∗
(
(A∗)i0 x

)
= bi0ρ∗(x) ≤ 1.(3.14)

Moreover, by (3.9), we find that

1 − 1

q0

+ (d + 1)
ln(λ−)

ln b
≥ 1 − 1

θ0
+ (d + 1)

ln(λ−)

ln b
> 0.

From this, (3.13), (3.14), and Lemma 3.7, we infer that, for any x ∈ Rn satisfying ρ∗(x) ≤ b−i0 ,

∣∣∣̂a(x)
∣∣∣ . bi0 max

{
b
− i0

q0 , b
− i0
θ0

} [
ρ∗

(
(A∗)i0 x

)](d+1)
ln(λ−)

ln b(3.15)

= max

{
b

i0[1− 1
q0
+(d+1)

ln(λ−)
ln b

]
, b

i0[1− 1
θ0
+(d+1)

ln(λ−)
ln b

]
} [
ρ∗(x)

](d+1)
ln(λ−)

ln b

= max

{[
ρ∗(x)

] 1
q0
−1
,
[
ρ∗(x)

] 1
θ0
−1

}
.

This shows (3.12) in Case 1).

Case 2) ρ∗(x) > b−i0 . In this case, note that

ρ∗
(
(A∗)i0 x

)
= bi0ρ∗(x) > 1.

Using this, (3.13), Lemma 3.7, and the fact that

1

θ0
− 1 ≥ 1

q0

− 1 ≥ 0,

we conclude that, for any x ∈ Rn satisfying ρ∗(x) > b−i0 ,

∣∣∣̂a(x)
∣∣∣ . bi0 max

{
b
− i0

q0 , b
− i0
θ0

}
= max

{
b
−i0( 1

q0
−1)
, b
−i0( 1

θ0
−1)

}

≤ max

{[
ρ∗(x)

] 1
q0
−1
,
[
ρ∗(x)

] 1
θ0
−1

}
,

which, combined with (3.15), then completes the proof of (3.12) and hence Lemma 3.6. �

The following inequality is basic and used throughout this article.

Lemma 3.8. Let {a j} j∈N ⊂ [0,∞). If α ∈ (0, 1], then


∑

j∈N
a j



α

≤
∑

j∈N
aαj .
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The following conclusion is also used in the proof of Theorem 3.1.

Lemma 3.9. Let A, X, and θ0 be the same as in Definition 3.3. Further assume that X satisfies

(3.1) with q0 ∈ [θ0, 1]. Then there exists a positive constant C such that, for any {λi}i∈N ⊂ C and

{B(i)}i∈N ⊂ B,

∑

i∈N
|λi| ≤ C

∥∥∥∥∥∥∥∥


∑

i∈N

[
|λi|1B(i)

‖1B(i)‖X

]θ0

1
θ0

∥∥∥∥∥∥∥∥
X

.

Proof. Indeed, by Lemma 3.8, Definition 2.5, (3.1), and Definition 2.4(ii), we find that, for any

{λi}i∈N ⊂ C and {B(i)}i∈N ⊂ B,

∞∑

i=1

|λi| ≤

∞∑

i=1

|λi|q0



1
q0

=


∞∑

i=1

∥∥∥∥∥∥
|λi|1B(i)

‖1B(i)‖X

∥∥∥∥∥∥
q0

X



1
q0

=


∞∑

i=1

∥∥∥∥∥∥
|λi|q01B(i)

‖1B(i)‖q0

X

∥∥∥∥∥∥
X

1
q0



1
q0

.

∥∥∥∥∥∥∥

∞∑

i=1

[
|λi|1B(i)

‖1B(i)‖X

]q0

∥∥∥∥∥∥∥

1
q0

X
1

q0

=

∥∥∥∥∥∥∥∥


∞∑

i=1

[
|λi|1B(i)

‖1B(i)‖X

]q0


1
q0

∥∥∥∥∥∥∥∥
X

≤

∥∥∥∥∥∥∥∥


∞∑

i=1

[
|λi|1B(i)

‖1B(i)‖X

]θ0

1
θ0

∥∥∥∥∥∥∥∥
X

.

This finishes the proof of Lemma 3.9. �

Next, we show Theorem 3.1.

Proof of Theorem 3.1. Let q and d be the same as in Definition 3.3. Without loss of generality,

we may assume that ‖ f ‖HA
X

(Rn) > 0. Then, by Lemma 3.4 and Definition 3.3(ii), we find that

there exists a sequence {λi}i∈N ⊂ C and a sequence {ai}i∈N of anisotropic (X, q, d)-atoms supported,

respectively, in {B(i)}i∈N ⊂ B such that

f =
∑

i∈N
λiai in S′(Rn)(3.16)

and

‖ f ‖HA
X

(Rn) ∼

∥∥∥∥∥∥∥∥


∑

i∈N

[
|λi|1B(i)

‖1B(i)‖X

]θ0

1/θ0
∥∥∥∥∥∥∥∥

X

.(3.17)

First, we try to find the desired function F. Note that a function g ∈ L1(Rn) implies that ĝ

is well defined in Rn (see, for instance, [23, (1.11)]), so does âi for any i ∈ N. Moreover, from

Lemmas 3.6 and 3.9 and from (3.17), it follows that, for any x ∈ Rn,

∑

i∈N
|λi||âi(x)| .

∑

i∈N
|λi|max

{[
ρ∗(x)

] 1
q0
−1
,
[
ρ∗(x)

] 1
θ0
−1

}
(3.18)

. ‖ f ‖HA
X

(Rn) max

{[
ρ∗(x)

] 1
q0
−1
,
[
ρ∗(x)

] 1
θ0
−1

}
< ∞.
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Therefore, the function

F(·) :=
∑

i∈N
λiâi(·)(3.19)

is well defined pointwisely on Rn and, for any x ∈ Rn,

|F(x)| . ‖ f ‖HA
X

(Rn) max

{[
ρ∗(x)

] 1
q0
−1
,
[
ρ∗(x)

] 1
θ0
−1

}
,

which completes the proof of (3.4).

Second, we show the continuity of F on Rn. If we can prove that F is continuous on any

compact subset of Rn, then the continuity of F on Rn is obvious. Let E ⊂ Rn be any given compact

set. Then there exists a positive constant K, depending only on A and E, such that ρ∗(x) ≤ K holds

true for any x ∈ E. By this and (3.18), we conclude that, for any x ∈ E,

∑

i∈N
|λi||âi(x)| . max

{
K

1
q0
−1
, K

1
θ0
−1

}
‖ f ‖HA

X
(Rn) < ∞.

Thus, the summation
∑

i∈N λiâi(·) converges uniformly on E. This, together with the fact that âi is

continuous for any i ∈ N, further implies that F is also continuous on E and hence on Rn.

Finally, we show (3.3). By (3.16) and the continuity of the Fourier transform in S′(Rn) (see,

for instance, [23, Theorem 1.17]), we obtain

f̂ =
∑

i∈N
λiâi in S′(Rn).

Thus, to prove (3.3), we only need to show that

F =
∑

i∈N
λiâi in S′(Rn).(3.20)

Indeed, from Lemma 3.6 and the definition of Schwartz functions [see (2.7)], we deduce that, for

any i ∈ N and ϕ ∈ S(Rn),

|〈âi, ϕ〉| =
∣∣∣∣∣
∫

Rn

âi(x)ϕ(x) dx

∣∣∣∣∣

≤
∞∑

k=1

∫

(A∗)k+1B∗
0
\(A∗)kB∗

0

max

{[
ρ∗(x)

] 1
q0
−1
,
[
ρ∗(x)

] 1
θ0
−1

}
|ϕ(x)| dx

+ ‖ϕ‖L1(Rn)

.
∞∑

k=1

bk+1b
k( 1
θ0
−1)

b
−k(⌊ 1

θ0
⌋+2)
+ ‖ϕ‖L1(Rn)

≤
∞∑

k=1

b−k + ‖ϕ‖L1(Rn),
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where B∗
0

is the unit dilated ball with respect to A∗. This further implies that there exists a positive

constant C such that |〈âi, ϕ〉| ≤ C holds true uniformly for any i ∈ N. Combining this and (3.17),

we have

lim
I→∞

∞∑

i=I+1

|λi||〈âi, ϕ〉| . lim
I→∞

∞∑

i=I+1

|λi| = 0.

Therefore, for any ϕ ∈ S(Rn),

〈F, ϕ〉 = lim
I→∞

〈 I∑

i=1

λiâi, ϕ

〉
.

This finishes the proof of (3.20) and hence Theorem 3.1. �

4 Hardy–Littlewood Inequalities on HA
X(Rn)

In this section, as applications of Theorem 3.1, we first prove that the function F given in

Theorem 3.1 has a higher order convergence at the origin (see Theorem 4.1 below). Then we

extend the Hardy–Littlewood inequality to the setting of anisotropic Hardy spaces associated with

ball quasi-Banach function spaces (see Theorem 4.2 below). In what follows, ε → 0+ means that

there exists an α0 ∈ (0,∞) such that ε ∈ (0, α0) and ε→ 0.

Theorem 4.1. Let A, X, q0, and ρ∗ be the same as in Theorem 3.1. Then, for any f ∈ HA
X

(Rn),

there exists a continuous function F on Rn such that f̂ = F in S′(Rn) and

lim
|x|→0+

F(x)

[ρ∗(x)]
1
θ0
−1
= 0.(4.1)

Proof. Let f ∈ HA
X

(Rn) and q and d be the same as in Definition 3.3. Then, by Lemma 3.4

and Definition 3.3(ii), we find that there exists a sequence {λi}i∈N ⊂ C and a sequence {ai}i∈N of

anisotropic (X, q, d)-atoms supported, respectively, in {B(i)}i∈N ⊂ B such that

f =
∑

i∈N
λiai in S′(Rn)

and

‖ f ‖HA
X

(Rn) ∼

∥∥∥∥∥∥∥∥


∑

i∈N

[
|λi|1B(i)

‖1B(i)‖X

]θ0

1
θ0

∥∥∥∥∥∥∥∥
X

.(4.2)

Moreover, from the proof of Theorem 3.1, it follows that, for any x ∈ Rn,

F(x) =
∑

i∈N
λiâi(x)(4.3)

is continuous and satisfies that f̂ = F in S′(Rn). Thus, to show the present theorem, we only need

to prove that (4.1) holds true for F in (4.3). On the one hand, by an argument similar to that used
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in the proof of (3.15), we conclude that, for any anisotropic (X, q, d)-atom a supported in x0 + Bk0

with some x0 ∈ Rn and k0 ∈ Z and for any x ∈ Rn satisfying ρ∗(x) ≤ b−k0 ,

∣∣∣̂a(x)
∣∣∣ . max

{
b

k0[1− 1
q0
+(d+1)

ln(λ−)
ln b

]
, b

k0[1− 1
θ0
+(d+1)

ln(λ−)
ln b

]
} [
ρ∗(x)

](d+1)
ln(λ−)

ln b ,

which, together with (3.9) and Lemma 3.7, further implies that

(d + 1)
ln(λ−)

ln b
>

1

θ0
− 1

and

lim
|x|→0+

|̂a(x)|

[ρ∗(x)]
1
θ0
−1
= 0.(4.4)

On the other hand, from (4.3), Lemmas 3.6, 3.7, and 3.9, and (4.2), we deduce that, for any x ∈ Rn

satisfying |x| < 1,

|F(x)|

[ρ∗(x)]
1
θ0
−1
≤

∑

i∈N
|λi|

|âi(x)|

[ρ∗(x)]
1
θ0
−1
.

∑

i∈N
|λi| . ‖ f ‖HA

X
(Rn) < ∞.(4.5)

Using this, the dominated convergence theorem, and (4.4), we find that

lim
|x|→0+

F(x)

[ρ∗(x)]
1

q0
−1
= 0,

which completes the proof of Theorem 4.1. �

As another application of Theorem 3.1, we extend the Hardy–Littlewood inequality to the set-

ting of anisotropic Hardy spaces associated with ball quasi-Banach function spaces as follows.

Theorem 4.2. Let A, X, θ0, and q0 be the same as in Theorem 3.1. Then, for any f ∈ HA
X

(Rn),

there exists a continuous function F on Rn such that f̂ = F in S′(Rn) and

[∫

Rn

|F(x)|q0 min

{[
ρ∗(x)

]q0−
q0
θ0
−1
,
[
ρ∗(x)

]q0−2
}

dx

] 1
q0

≤ C‖ f ‖HA
X

(Rn),(4.6)

where C is a positive constant depending only on A and X.

Proof. Let p0 and d be the same as in Definition 3.3, q ∈ (max{p0, 2},∞], and f ∈ HA
X

(Rn). Then,

by Lemma 3.4 and Definition 3.3, we find that there exists a sequence {λi}i∈N ⊂ C and a sequence

{ai}i∈N of (X, q, d)-atoms supported, respectively, in {B(i)}i∈N ⊂ B such that

f =
∑

i∈N
λiai in S′(Rn)

and
∥∥∥∥∥∥∥∥


∑

i∈N

[
|λi|1B(i)

‖1B(i)‖X

]θ0

1/θ0
∥∥∥∥∥∥∥∥

X

∼ ‖ f ‖HA
X

(Rn) < ∞.(4.7)
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By Theorem 3.1, we find that, to prove the present theorem, it suffices to show that (4.6) holds true

for F in (3.19). For this purpose, we first prove that there exists a positive constant M such that,

for any (X, q, d)-atom a, it holds true that

(∫

Rn

[∣∣∣̂a(x)
∣∣∣ min

{[
ρ∗(x)

]1− 1
θ0
− 1

q0 ,
[
ρ∗(x)

]1− 2
q0

}]q0

dx

) 1
q0

≤ M.(4.8)

Without loss of generality, we may assume that a is supported in x0 + Bi0 with some x0 ∈ Rn and

i0 ∈ Z. Then it is easy to conclude that

{∫

Rn

[∣∣∣̂a(x)
∣∣∣ min

{[
ρ∗(x)

]1− 1
θ0
− 1

q0 ,
[
ρ∗(x)

]1− 2
q0

}]q0

dx

} 1
q0

(4.9)

.



∫

(A∗)−i0+1B∗
0

[∣∣∣̂a(x)
∣∣∣ min

{[
ρ∗(x)

]1− 1
θ0
− 1

q0 ,
[
ρ∗(x)

]1− 2
q0

}]q0

dx



1
q0

+



∫

((A∗)−i0+1B∗
0
)∁
· · · dx



1
q0

=: I1 + I2,

where B∗
0

is the unit dilated ball with respect to A∗. Let θ be a fixed positive constant such that

1 − 1

q0

+ (d + 1)
ln(λ−)

ln b
− θ ≥ 1 − 1

θ0
+ (d + 1)

ln(λ−)

ln b
− θ > 0.

Using this and (3.15), we find that

I1 . bi0[1+(d+1) ln λ−
ln b

] max

{
b
− i0
θ0 , b

− i0
q0

}
(4.10)

×


∫

(A∗)−i0+1B∗
0

[
min

{[
ρ∗(x)

]1− 1
θ0
− 1

q0
+(d+1)

ln λ−
ln b ,

[
ρ∗(x)

]1− 2
q0
+(d+1)

ln λ−
ln b

}]q0

dx

} 1
q0

≤ bi0[1+(d+1)
ln λ−
ln b

] max

{
b
− i0
θ0 , b

− i0
q0

}

×min

{
b
−i0[1− 1

θ0
+(d+1)

ln λ−
ln b
−θ]
, b
−i0[1− 1

q0
+(d+1)

ln λ−
ln b
−θ]

}

×


∫

(A∗)−i0+1B∗
0

[
ρ∗(x)

]θq0−1
dx



1
q0

= bi0θ


∑

k∈Z\N
b−i0+k(b − 1)b(−i0+k)(θq0−1)



1
q0

=

(
b − 1

1 − b−θq0

) 1
q0

.
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For I2, by the Hölder inequality, the Plancherel theorem (see [23, Theorem 1.18]), q0 ∈ [θ0, 1],

Definition 3.3(i)2, and (3.2), we obtain

I2 ≤


∫

((A∗)−i0+1B∗
0
)∁

∣∣∣̂a(x)
∣∣∣2 dx



1
2

×


∫

((A∗)−i0+1B∗
0
)∁

[
min

{[
ρ∗(x)

]1− 1
p− −

1
q0 ,

[
ρ∗(x)

]1− 2
q0

}] 2q0
2−q0

dx



2−q0
2q0

≤ ‖a‖L2(Rn)


∑

k∈N
b−i0+k(b − 1)

[
min

{
b

(−i0+k)(1− 1
p− −

1
q0

)
, b

(−i0+k)(1− 2
q0

)
}] 2q0

2−q0



2−q0
2q0

≤ ‖a‖L2(Rn)

b−i0

[
min

{
b
−i0(1− 1

p− −
1

q0
)
, b
−i0(1− 2

q0
)
}] 2q0

2−q0



2−q0
2q0

. max

{
b

i0( 1
2
− 1

p− ), b
i0( 1

2
− 1

q0
)
}

min

{
b
−i0( 1

2
− 1

p− ), b
−i0( 1

2
− 1

q0
)
}

= 1,

which, together with (4.9) and (4.10), further implies (4.8).

Next, we prove (4.6). From Lemma 3.8, Definition 2.5, (3.1), Definition 2.4(ii), an argument

similar to that used in the proof of Lemma 3.9, and (4.7), we deduce that


∞∑

i=1

|λi|q0



1
q0

. ‖ f ‖HA
X

(Rn).

By this, (3.19), q0 ∈ [θ0, 1], Lemma 3.8, the Fatou lemma, and (4.8), we conclude that

[∫

Rn

|F(x)|q0 min

{[
ρ∗(x)

]q0−
q0
θ0
−1
,
[
ρ∗(x)

]q0−2
}

dx

] 1
q0

≤

∑

i∈N
|λi|q0

∫

Rn

[∣∣∣âi(x)
∣∣∣ min

{[
ρ∗(x)

]1− 1
θ0
− 1

q0 ,
[
ρ∗(x)

]1− 2
q0

}]q0

dx



1
q0

. M


∑

i∈N
|λi|q0



1
q0

. ‖ f ‖HA
X

(Rn).

This finishes the proof of Theorem 4.2. �

Remark 4.3. (i) If A := 2 In×n, then Theorems 4.1 and 4.2 were obtained, respectively, in [36,

Theorems 2.2 and 2.3].

(ii) Let A be a dilation and p ∈ (0, 1). Then, by Remark 3.2(ii), we find that Lp(Rn) satisfies all

the assumptions of Theorems 4.1 and 4.2 with X := Lp(Rn). In this case, Theorems 4.1 and

4.2 were obtained, respectively, in [7, Corollaries 6 and 8].
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(iii) Let A be a dilation and p(·) ∈ Clog(Rn) satisfy 0 < p̃− ≤ p̃+ < 1. Then, by Remark

3.2(iii), we conclude that Lp(·)(Rn) satisfies all the assumptions of Theorems 4.1 and 4.2

with X := Lp(·)(Rn). In this case, Theorems 4.1 and 4.2 were obtained, respectively, in [45,

Theorems 2 and 3].

(iv) Let ~p ∈ (0, 1)n. Then, by Remark 3.2(iv), we conclude that L~p(Rn) satisfies all the assump-

tions of Theorems 4.1 and 4.2 with X := L~p(Rn). In this case, Theorems 4.1 and 4.2 were

obtained, respectively, in [46, Theorems 4.1 and 4.3].

5 Several Applications

In this section, we apply Theorems 3.1, 4.1, and 4.2 to five concrete examples of ball quasi-

Banach function spaces, namely Morrey spaces (see Subsection 5.1 below), Lorentz spaces (see

Subsection 5.2 below), Orlicz spaces (see Subsection 5.3 below), Orlicz-slice spaces (see Subsec-

tion 5.4 below), and local generalized Herz–Hardy spaces (see Subsection 5.5 below).

5.1 Morrey Spaces

Recall that the classical Morrey space M
p
q (Rn) with 0 < q ≤ p < ∞, originally introduced by

Morrey [50] in 1938, plays a key role in harmonic analysis and partial differential equations. Since

then, various variants of Morrey spaces over different underlying spaces have been investigated

and developed (see, for instance, [14, 31, 32, 33, 34, 54]).

Definition 5.1. Let 0 < q ≤ p < ∞. The anisotropic Morrey space M
p

q,A
(Rn) is defined to be the

set of all the measurable functions f on Rn such that

‖ f ‖Mp

q,A
(Rn) := sup

B∈B
|B|1/p−1/q‖ f ‖Lq(B) < ∞,

where B is the same as in (2.3).

If 0 < q ≤ p < 1, then, obviously, M
p

q,A
(Rn) is a ball quasi-Banach function space. From these

and [59, Remark 8.4], we deduce that M
p

q,A
(Rn) satisfies all the assumptions of Definition 2.10

with X := M
p

q,A
(Rn), p− ∈ (0, q], θ0 ∈ (0, p−), and p0 ∈ (p,∞). Moreover, choose a q0 ∈ (p, 1].

Then, from Definition 5.1, we infer that, for any non-negative measurable functions { fk}∞k=1
and

any B ∈ B,
∞∑

k=1

‖ fk‖Mp/q0
q/q0 ,A

(Rn)
≤

∥∥∥∥∥∥∥

∞∑

k=1

fk

∥∥∥∥∥∥∥
M

p/q0
q/q0 ,A

(Rn)

and

‖1B‖Mp

q,A
(Rn) ≥ |B|

1
p > min

{
|B|

1
q0 , |B|

1
θ0

}
.

Therefore, all the assumptions of Theorems 3.1, 4.1, and 4.2 are satisfied with X := M
p

q,A
(Rn).

Applying Theorems 3.1, 4.1, and 4.2, we obtain the following conclusion.

Theorem 5.2. If 0 < q ≤ p < 1, then Theorems 3.1, 4.1, and 4.2 still hold true with X replaced

by M
p

q,A
(Rn).

Remark 5.3. We point out that Theorem 5.2 even when A := 2In×n is completely new.
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5.2 Lorentz Spaces

Let p ∈ (0,∞) and q ∈ (0,∞). Recall that the Lorentz space Lp,q(Rn) is defined to be the set of

all the measurable functions f on Rn with the following finite quasi-norm

‖ f ‖Lp,q(Rn) :=



[
q

p

∫ ∞

0

{
t

1
p f ∗(t)

}q dt

t

] 1
q

if q ∈ (0,∞),

sup
t∈(0,∞)

[
t

1
p f ∗(t)

]
if q = ∞

(5.1)

with the usual modification made when p = ∞, where f ∗ denotes the non-increasing rearrange-

ment of f , that is, for any t ∈ (0,∞),

f ∗(t) := inf
{
α ∈ (0,∞) : d f (α) ≤ t

}

with d f (α) := |{x ∈ Rn : | f (x)| > α}| for any α ∈ (0,∞).

Let p ∈ (0, 1), q ∈ (0, 1), and

N ∈ N ∩
[⌊(

1

p
− 1

)
ln b

ln(λ−)

⌋
+ 2,∞

)
.

Then, by [61, Remarks 2.7(ii) and 4.21(ii)], we conclude that Lp,q(Rn) satisfies all the assumptions

of Definition 2.10 with X := Lp,q(Rn), p− ∈ (0,min{p, q}], θ0 ∈ (0, p−), and p0 ∈ (max{p, q},∞).

Moreover, choose a q0 ∈ (max{p, q}, 1]. From (5.1), we further deduce that, for any non-negative

measurable functions { fk}∞k=1
and any B ∈ B,

∞∑

k=1

‖ fk‖Lp/q0 ,q/q0 (Rn) ≤
∥∥∥∥∥∥∥

∞∑

k=1

fk

∥∥∥∥∥∥∥
Lp/q0,q/q0 (Rn)

and

‖1B‖Lp,q(Rn) =

{
q

p

∫ |B|

0

t
q

p
−1

dt

} 1
q

= |B|
1
p ≥ min

{
|B|

1
q0 , |B|

1
θ0

}
.

Therefore, all the assumptions of Theorems 3.1, 4.1, and 4.2 are satisfied with X := Lp,q(Rn).

Applying Theorems 3.1, 4.1, and 4.2, we obtain the following conclusion.

Theorem 5.4. If p ∈ (0, 1) and q ∈ (0, 1), then Theorems 3.1, 4.1, and 4.2 still hold true with X

replaced by Lp,q(Rn).

Remark 5.5. We point out that Theorem 5.4 even when A := 2In×n is completely new.

5.3 Orlicz Spaces

Recall that a function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is non-decreasing,

Φ(0) = 0, Φ(t) > 0 for any t ∈ (0,∞), and limt→∞ Φ(t) = ∞. The function Φ is said to be of upper

(resp. lower) type p for some p ∈ [0,∞) if there exists a positive constant C such that, for any
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s ∈ [1,∞) (resp. s ∈ [0, 1]) and t ∈ [0,∞), Φ(st) ≤ CspΦ(t). The Orlicz space LΦ(Rn) is defined

to be the set of all the measurable functions f on Rn such that

‖ f ‖LΦ(Rn) := inf

{
λ ∈ (0,∞) :

∫

Rn

Φ

(
| f (x)|
λ

)
dx ≤ 1

}
< ∞.

Let Φ be an Orlicz function with lower type p−
Φ

and upper type p+
Φ

satisfying 0 < p−
Φ
≤ p+

Φ
< 1

and let

N ∈ N ∩
[⌊(

1

p−
Φ

− 1

)
ln b

ln(λ−)

⌋
+ 2,∞

)
.

By [61, Remarks 2.7(iii) and 4.21(iv)], we conclude that LΦ(Rn) satisfies all the assumptions of

Definition 2.10 with X := LΦ(Rn), p− ∈ (0, p−
Φ

], θ0 ∈ (0, p−
Φ

), and p0 ∈ (p+
Φ
,∞). Moreover, choose

a q0 ∈ (p+
Φ
, 1]. Then, from [67, Remark 5.3] and [36, (25)], we deduce that, for any non-negative

measurable functions { fk}∞k=1
and any B ∈ B,

∞∑

k=1

‖ fk‖
[LΦ(Rn)]

1
q0
≤

∥∥∥∥∥∥∥

∞∑

k=1

fk

∥∥∥∥∥∥∥
[LΦ(Rn)]

1
q0

and

‖1B‖LΦ(Rn) & min

{
|B|

1

p−
Φ , |B|

1

p+
Φ

}
≥ min

{
|B|

1
q0 , |B|

1
θ0

}
.

Therefore, all the assumptions of Theorems 3.1, 4.1, and 4.2 are satisfied with X := LΦ(Rn).

Applying Theorems 3.1, 4.1, and 4.2, we obtain the following conclusion.

Theorem 5.6. Let Φ be an Orlicz function with lower type p−
Φ

and upper type p+
Φ

satisfying 0 <

p−
Φ
≤ p+

Φ
< 1. Then Theorems 3.1, 4.1, and 4.2 still hold true with X replaced by LΦ(Rn).

Remark 5.7. We point out that Theorem 5.6 even when A := 2In×n is completely new.

5.4 Orlicz-Slice Spaces

Recently, Zhang et al. [67] originally introduced the Orlicz-slice space on Rn, which general-

izes both the slice space in [2] and the Wiener-amalgam space in [1]. They also introduced the

Orlicz-slice (local) Hardy spaces and developed a complete real-variable theory of these function

spaces in [66, 67]. Next, we recall the definition of anisotropic Orlicz-slice spaces.

Definition 5.8. Let ℓ ∈ Z, q ∈ (0,∞), and Φ be an Orlicz function. The anisotropic Orlicz-slice

space (E
q

Φ
)ℓ,A (Rn) is defined to be the set of all the measurable functions f on Rn such that

‖ f ‖(Eq

Φ
)ℓ,A(Rn) :=

{∫

Rn

[‖ f 1x+Bℓ‖LΦ(Rn)

‖1x+Bℓ‖LΦ(Rn)

]q

dx

} 1
q

< ∞,

where Bℓ is the same as in (2.2) with k replaced by ℓ.
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Let ℓ ∈ Z, q ∈ (0, 1), Φ be an Orlicz function with positive lower type p−
Φ

and positive upper

type p+
Φ

satisfying 0 < p−
Φ
≤ p+

Φ
< 1, and

N ∈ N ∩
[⌊(

1

min{p−
Φ
, q} − 1

)
ln b

ln(λ−)

⌋
+ 2,∞

)
.

Then, by [59, Remark 8.14], we conclude that (E
q

Φ
)ℓ,A(Rn) satisfies all the assumptions of Defi-

nition 2.10 with X := (E
q

Φ
)ℓ,A(Rn), p− ∈ (0,min{p−

Φ
, q}], θ0 ∈ (0, p−), and p0 ∈ (max{p+

Φ
, q},∞).

Moreover, choose a q0 = 1. On the one hand, from [67, Lemma 5.4], we infer that, for any

non-negative measurable functions { fk}∞k=1
,

∞∑

k=1

‖ fk‖
[(E

q

Φ
)ℓ,A(Rn)]

1
q0
≤

∥∥∥∥∥∥∥

∞∑

k=1

fk

∥∥∥∥∥∥∥
[(E

q

Φ
)ℓ,A(Rn)]

1
q0

.

On the other hand, we have, for any B ∈ B,

(5.2) ‖1B‖(Eq

Φ
)ℓ,A(Rn) & min

{
|B|, |B|

1
θ0

}
.

Indeed, for any B ∈ B with |B| ≥ |Bℓ|,

‖1B‖(Eq

Φ
)ℓ,A(Rn) =

{∫

Rn

[‖1B1x+Bℓ‖LΦ(Rn)

‖1x+Bℓ‖LΦ(Rn)

]q

dx

} 1
q

(5.3)

&

(∫

B

1 dx

) 1
q

= |B|
1
q .

On the other hand, for any x0 ∈ Rn, k ∈ Z with |Bk| ≤ |Bℓ|, x ∈ B(x0, λ
ℓ
−), and η ∈ (0, p−

Φ
), by [61,

Remark 4.21(iv)], we conclude that LΦ(Rn) satisfies Assumption 2.7 with X := LΦ(Rn), u := 1/η,

and p := η. Thus, we obtain

‖1x0+Bk
‖η

LΦ(Rn)
& ‖[M(1x0+Bk

)]1/η‖η
LΦ(Rn)

.(5.4)

For any y ∈ x + Bℓ, we have

M(1x0+Bk
)(y) ≥ 1

|Bℓ|

∫

x+Bℓ

1x0+Bk
(z) dz &

|Bk|
|Bℓ|
.(5.5)

Combining (5.4) and (5.5), we conclude that

‖1x0+Bk
‖η

LΦ(Rn)
&

∥∥∥∥∥∥∥

[
|Bk|
|Bℓ|

(1x+Bℓ )

]1/η
∥∥∥∥∥∥∥

η

LΦ(Rn)

& |Bk| ‖1x+Bℓ ‖
η

LΦ(Rn)
.

Therefore, we obtain

‖1x0+Bk
‖(Eq

Φ
)ℓ,A(Rn) =

{∫

Rn

[‖1x0+Bk
1x+Bℓ‖LΦ(Rn)

‖1x+Bℓ‖LΦ(Rn)

]q

dx

} 1
q

(5.6)
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&

{∫

B(x0,λ
ℓ
−)

[‖1x0+Bk
‖LΦ(Rn)

‖1x+Bℓ‖LΦ(Rn)

]q

dx

} 1
q

& |Bk|1/η
{∫

B(x0,λ
ℓ
−)

1 dx

} 1
q

∼ |Bk|1/η.

By (5.3) and (5.6), we find that, for any B ∈ B,

‖1B‖(Eq

Φ
)ℓ,A(Rn) & |B|1/q & |B| if |B| ≥ |Bℓ|

and

‖1B‖(Eq

Φ
)ℓ,A(Rn) & |B|1/p

−
Φ & |B|1/θ0 if |B| ≤ |Bℓ|.

This finishes the proof of (5.2).

Therefore, all the assumptions of Theorems 3.1, 4.1, and 4.2 are satisfied with X := (E
q

Φ
)ℓ,A(Rn).

Applying Theorems 3.1, 4.1, and 4.2, we obtain the following conclusion.

Theorem 5.9. Let ℓ ∈ Z, q ∈ (0, 1), and Φ be an Orlicz function with lower type p−
Φ

and upper

type p+
Φ

satisfying 0 < p−
Φ
≤ p+

Φ
< 1. Then Theorems 3.1, 4.1, and 4.2 still hold true with X

replaced by (E
q

Φ
)ℓ,A(Rn).

Remark 5.10. We point out that Theorem 5.9 even when A := 2In×n is completely new.

5.5 Local Generalized Herz Spaces

In what follows, we always let R+ := (0,∞). A nonnegative function ω on R+ is said to be

almost increasing (resp. almost decreasing) on R+ if there exists a constant C ∈ [1,∞) such that,

for any s, t ∈ R+ satisfying s ≤ t (resp. s ≥ t),

ω(s) ≤ Cω(t)

(see, for instance, [37, 42]). Now, we recall the concept of the function class M(R+) as follows

(see, for instance, [37, 51]).

Definition 5.11. The function class M(R+) is defined to be the set of all the positive functions ω

on R+ such that, for any 0 < δ1 < δ2 < ∞,

0 < inf
t∈(δ1,δ2)

ω(t) ≤ sup
t∈(δ1 ,δ2)

ω(t) < ∞

and there exist four constants α0, β0, α∞, β∞ ∈ R such that

(i) for any t ∈ (0, 1], ω(t)t−α0 is almost increasing and ω(t)t−β0 is almost decreasing;

(ii) for any t ∈ [1,∞), ω(t)t−α∞ is almost increasing and ω(t)t−β∞ is almost decreasing.

Next, we introduce anisotropic local generalized Herz spaces as follows.
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Definition 5.12. Let A be a dilation, p, q ∈ (0,∞], and ω ∈ M(R+). The anisotropic local gener-

alized Herz space K̇ p,q
A,ω(Rn) is defined to be the set of all f ∈ L

p

loc
(Rn \ {0}) such that

‖ f ‖K̇ p,q
A,ω

(Rn) :=


∑

k∈Z

[
ω

(
bk

)]q ∥∥∥ f 1Bk\Bk−1

∥∥∥q

Lp(Rn)



1
q

< ∞

with the usual modification made when q = ∞, where b is the same as in (2.1) and, for any k ∈ Z,

Bk the same as in (2.2).

Now, we introduce the following Matuszewska–Orlicz indices (see, for instance, [48, 49]).

Definition 5.13. Letω be a positive function on R+. Then the Matuszewska–Orlicz indices m0(ω),

M0(ω), m∞(ω), and M∞(ω) of ω are defined, respectively, by setting, for any h ∈ (0,∞),

m0(ω) := sup
t∈(0,1)

ln( lim
h→0+

ω(ht)
ω(h)

)

ln t
, M0(ω) := inf

t∈(0,1)

ln( lim
h→0+

ω(ht)
ω(h)

)

ln t
,

m∞(ω) := sup
t∈(1,∞)

ln( lim
h→∞

ω(ht)
ω(h)

)

ln t
, and M∞(ω) := inf

t∈(1,∞)

ln( lim
h→∞

ω(ht)
ω(h)

)

ln t
.

The following property about the function class M(R+) and the Matuszewska–Orlicz indices

can be found in [42, Lemma 1.1.6] (see also [52, (6.4), (6.5), and (6.14)]). In what follows, for

any ω ∈ M(R+) and t ∈ R+, ωs(t) := [ω(t)]s.

Lemma 5.14. Let ω ∈ M(R+). Then, for any given t ∈ (0,∞), it holds true that 1/ω, ωt ∈ M(R+)

and

(i) m0(1/ω) = −M0(ω) and M0(1/ω) = −m0(ω);

(ii) m∞(1/ω) = −M∞(ω) and M∞(1/ω) = −m∞(ω);

(iii) m0(ωt) = tm0(ω) and M0(ωt) = tM0(ω);

(iv) m∞(ωt) = tm∞(ω) and M∞(ωt) = tM∞(ω).

Remark 5.15. Let ω ∈ M(R+). Then, by [42, Remark 1.1.5(ii)], we conclude that

−∞ < m0(ω) ≤ M0(ω) < ∞

and

−∞ < m∞(ω) ≤ M∞(ω) < ∞.

The following theorem shows that anisotropic local generalized Herz spaces K̇ p,q
A,ω

(Rn) are ball

quasi-Banach function spaces under some additional assumptions on the exponent ω ∈ M(R+);

see [42, Theorem 1.2.42] for the standard Euclidean space case.
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Theorem 5.16. Let A be a dilation, p, q ∈ (0,∞], and ω ∈ M(R+) with m0(ω) ∈ (− 1
p
,∞). Then

the anisotropic local generalized Herz space K̇ p,q
A,ω

(Rn) is a ball quasi-Banach function space.

Proof. Indeed, by an argument similar to that used in the proof of [42, Theorem 1.2.38], we find

that K̇ p,q
A,ω

(Rn) is a quasi-Banach space satisfying (i), (ii), and (iii) of Definition 2.4. Next, we

prove that K̇ p,q
A,ω

(Rn) satisfies Definition 2.4(iv). To this end, let x0 ∈ Rn, k0 ∈ Z, and Bk0
be the

same as in (2.2). Then

∥∥∥∥1x0+Bk0

∥∥∥∥K̇ p,q
A,ω

(Rn)
=


∑

k∈Z

[
ω

(
bk

)]q
∥∥∥∥1x0+Bk0

1Bk\Bk−1

∥∥∥∥
q

Lp(Rn)



1
q

(5.7)

.


∑

k∈Z\N

[
ω

(
bk

)]q
∥∥∥∥1x0+Bk0

1Bk\Bk−1

∥∥∥∥
q

Lp(Rn)



1
q

+


∑

k∈N
· · ·



1
q

=: I + II.

We first deal with I. From [42, Lemma 1.1.12], we deduce that, for any k ∈ Z\N,

ω
(
bk

)
. bk[m0(ω)−ε],

where ε ∈ (0,m0(ω) + 1
p
) is a fixed positive constant. This, combined with (5.7), further implies

that

I .


∑

k∈Z\N
bkq[m0(ω)−ε] ∥∥∥1Bk\Bk−1

∥∥∥q

Lp(Rn)



1
q

(5.8)

.


∑

k∈Z\N
b

kq[m0(ω)+ 1
p
−ε]



1
q

< ∞.

Next, we deal with II. To this end, we first claim that, for any k ∈ N∩(τ+ |k0 |+ |⌊logb ρ(x0)⌋|+3,∞)

with τ in (2.4),

(
x0 + Bk0

) ∩ (Bk\Bk−1) = ∅.(5.9)

Indeed, by the inequality in line 26 of [4, p. 7], we conclude that, for any y ∈ x0 + Bk0
,

ρ(y) ≤ bτ
[
ρ(x0 − y) + ρ(x0)

]
< bτ

[
bk0−1 + b⌊logb ρ(x0)⌋+1

]

≤ bτ+|k0 |+|⌊logb ρ(x0)⌋|+1 < bk−2,

which further implies y ∈ Bk−1 and hence x0 + Bk0
⊂ Bk−1. Thus, (5.9) holds true. From (5.7) and

(5.9), we deduce that

II =


∑

k∈N∩[1,τ+|k0 |+|⌊logb ρ(x0)⌋|+3]

[
ω

(
bk

)]q
∥∥∥∥1x0+Bk0

1Bk\Bk−1

∥∥∥∥
q

Lp(Rn)



1
q

< ∞.

This, together with (5.7) and (5.8), then finishes the proof of Theorem 5.16. �
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The following lemma gives the Fefferman–Stein vector-valued inequality on anisotropic local

generalized Herz spaces; see [42, Theorem 1.6.1] for the standard Euclidean space case.

Lemma 5.17. Let A be a dilation, p, r ∈ (1,∞], q ∈ (0,∞], and ω ∈ M(R+) satisfy

−1

p
< m0(ω) ≤ M0(ω) <

1

p′

and

−1

p
< m∞(ω) ≤ M∞(ω) <

1

p′
,

where 1
p
+ 1

p′ = 1. Then there exists a positive constant C such that, for any { f j} j∈N ⊂ L1
loc

(Rn),

∥∥∥∥∥∥∥∥∥


∑

j∈N

[
M( f j)

]r



1
r

∥∥∥∥∥∥∥∥∥K̇ p,q
A,ω

(Rn)

≤ C

∥∥∥∥∥∥∥∥∥


∑

j∈N
| f j|r



1
r

∥∥∥∥∥∥∥∥∥K̇ p,q
A,ω

(Rn)

.

To prove this lemma, we need more preparations. Recall that an operator T defined on M (Rn)

is called a sublinear operator if, for any f , g ∈M (Rn) and λ ∈ C,

|T ( f + g)| ≤ |T ( f )| + |T (g)|

and

|T (λ f )| = |λ||T ( f )|.
Moreover, for any normed linear space X and any operator T on X, the operator norm ‖T‖X→X of

T is defined by setting

‖T‖X→X := sup
{x∈X: ‖x‖X=1}

‖T (x)‖X .

The following lemma is a boundedness criterion of sublinear operators on anisotropic local gener-

alized Herz spaces; see [42, Theorem 1.5.1] for the standard Euclidean space case.

Lemma 5.18. Let A be a dilation, p ∈ (1,∞], q ∈ (0,∞], and ω ∈ M(R+) satisfy

−1

p
< m0(ω) ≤ M0(ω) <

1

p′

and

−1

p
< m∞(ω) ≤ M∞(ω) <

1

p′
,

where 1
p
+ 1

p′ = 1. Assume that T is a sublinear operator satisfying that T is bounded on Lp(Rn)

and that there exists a positive constant C0 such that, for any f ∈ K̇ p,q
A,ω

(Rn) and x < supp ( f ) :=

{x ∈ Rn : f (x) , 0},

|T ( f )(x)| ≤ C0

∫

Rn

| f (y)|
ρ(x − y)

dy,(5.10)

where ρ is the same as in Definition 2.3. Then there exists a positive constant C, independent of

T , such that, for any f ∈ K̇ p,q
A,ω

(Rn),

‖T ( f )‖K̇ p,q
A,ω

(Rn) ≤ C
[
C0 + ‖T‖Lp(Rn)→Lp(Rn)

] ‖ f ‖K̇ p,q
A,ω

(Rn).(5.11)
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Proof. Let f ∈ K̇ p,q
A,ω

(Rn). For any given k ∈ Z, let

fk,1 := f 1Bk−τ−1
, fk,2 := f 1Bk+τ+2\Bk−τ−1

, and fk,3 := f 1[Bk+τ+2]∁ ,

where τ is the same as in (2.4). Obviously, for any k ∈ Z, it holds true that

f = fk,1 + fk,2 + fk,3.

From this, Definition 5.12, the sublinearity of T , and the Minkowski inequality, we deduce that

‖T ( f )‖K̇ p,q
A,ω

(Rn) =


∑

k∈Z

[
ω

(
bk

)]q ∥∥∥T ( f )1Bk\Bk−1

∥∥∥q

Lp(Rn)



1
q

(5.12)

.


∑

k∈Z

[
ω

(
bk

)]q ∥∥∥T ( fk,1)1Bk\Bk−1

∥∥∥q

Lp(Rn)



1
q

+


∑

k∈Z

[
ω

(
bk

)]q ∥∥∥T ( fk,2)1Bk\Bk−1

∥∥∥q

Lp(Rn)



1
q

+


∑

k∈Z

[
ω

(
bk

)]q ∥∥∥T ( fk,3)1Bk\Bk−1

∥∥∥q

Lp(Rn)



1
q

=: I1 + I2 + I3,

where the implicit positive constant is independent of both T and f . Next, we deal with I1, I2, and

I3 successively. To this end, let

ε ∈
(
0,min

{
min{m0(ω),m∞(ω)} + 1

p
,

1

p′
−max{M0(ω),M∞(ω)}

})
(5.13)

be a fixed positive constant. Then, by [42, Lemma 1.5.2], we find that, for any 0 < s < t < ∞,

ω(s)

ω(t)
.

(
s

t

)min{m0(ω),m∞(ω)}−ε
(5.14)

and

ω(t)

ω(s)
.

(
t

s

)max{M0(ω),M∞(ω)}+ε
,(5.15)

where the implicit positive constant is independent of both T and f .

We first deal with I1. From the inequality in line 26 of [4, p. 7], we infer that, for any k, i ∈ Z
satisfying i ∈ (−∞, k − τ − 1] and for any x, y ∈ Rn satisfying x ∈ Bk\Bk−1 and y ∈ Bi\Bi−1,

ρ(x − y) ≥ b−τρ(x) − ρ(y) = bk−τ−1 − bi−1

≥ bk−τ−1 − bk−τ−2 = (b−τ−1 − b−τ−2)bk.
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By this, (5.10), and the Hölder inequality, we conclude that, for any k ∈ Z and x ∈ Bk\Bk−1,

∣∣∣T ( fk,1)(x)
∣∣∣ ≤ C0

∫

Rn

| fk,1(y)|
ρ(x − y)

dy = C0

k−τ−1∑

i=−∞

∫

Bi\Bi−1

| f (y)|
ρ(x − y)

dy(5.16)

. C0

k−τ−1∑

i=−∞
b
−k+ i

p′
∥∥∥ f 1Bi\Bi−1

∥∥∥
Lp(Rn)

,

where the implicit positive constant is independent of both T and f . Moreover, from (5.15), it

follows that, for any k, i ∈ Z satisfying i ∈ (−∞, k − τ − 1],

ω(bk)

ω(bi)
. b(k−i)[max{M0(ω),M∞(ω)}+ε],

which, combined with (5.16), further implies that, for any k ∈ Z,

ω
(
bk

) ∥∥∥T ( fk,1)1Bk\Bk−1

∥∥∥
Lp(Rn)

(5.17)

. C0ω
(
bk

) k−τ−1∑

i=−∞
b
−k+ i

p′
∥∥∥ f 1Bi\Bi−1

∥∥∥
Lp(Rn)

∥∥∥1Bk\Bk−1

∥∥∥
Lp(Rn)

. C0

k−τ−1∑

i=−∞
b

1
p′ (i−k)ω(bk)

ω(bi)
ω

(
bi
) ∥∥∥ f 1Bi\Bi−1

∥∥∥
Lp(Rn)

. C0

k−τ−1∑

i=−∞
b

(k−i)[max{M0(ω),M∞(ω)}+ε− 1
p′ ]ω

(
bi
) ∥∥∥ f 1Bi\Bi−1

∥∥∥
Lp(Rn)

,

where the implicit positive constants are independent of both T and f . Next, we show the desired

estimate of I1 by considering the following two cases on q.

Case 1) q ∈ (0, 1]. In this case, by (5.12), (5.17), Lemma 3.8, and (5.13), we conclude that

I1 . C0


∑

k∈Z

k−τ−1∑

i=−∞
b

q(k−i)[max{M0(ω),M∞(ω)}+ε− 1
p′ ]

[
ω

(
bi
)]q ∥∥∥ f 1Bi\Bi−1

∥∥∥q

Lp(Rn)



1
q

(5.18)

= C0


∑

i∈Z

∞∑

k=i+τ+1

b
q(k−i)[max{M0(ω),M∞(ω)}+ε− 1

p′ ]
[
ω

(
bi
)]q ∥∥∥ f 1Bi\Bi−1

∥∥∥q

Lp(Rn)



1
q

∼ C0


∑

i∈Z

[
ω

(
bi
)]q ∥∥∥ f 1Bi\Bi−1

∥∥∥q

Lp(Rn)



1
q

≤ [
C0 + ‖T‖Lp(Rn)→Lp(Rn)

] ‖ f ‖K̇ p,q
A,ω

(Rn),

where the implicit positive constants are independent of both T and f .

Case 2) q ∈ (1,∞]. In this case, from (5.17), the Hölder inequality, and (5.13), we deduce that,

for any k ∈ Z,

ω
(
bk

) ∥∥∥T ( fk,1)1Bk\Bk−1

∥∥∥
Lp(Rn)

(5.19)
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. C0


k−τ−1∑

i=−∞
b

(k−i)q′
2

[max{M0(ω),M∞(ω)}+ε− 1
p′ ]



1
q′

×


k−τ−1∑

i=−∞
b

(k−i)q
2 [max{M0(ω),M∞(ω)}+ε− 1

p′ ]
[
ω

(
bi
)]q ∥∥∥ f 1Bi\Bi−1

∥∥∥q

Lp(Rn)



1
q

∼ C0


k−τ−1∑

i=−∞
b

(k−i)q
2

[max{M0(ω),M∞(ω)}+ε− 1
p′ ]

[
ω

(
bi
)]q ∥∥∥ f 1Bi\Bi−1

∥∥∥q

Lp(Rn)



1
q

,

which, together with (5.12) and (5.13), further implies that

I1 . C0


∑

k∈Z

k−τ−1∑

i=−∞
b

(k−i)q
2

[max{M0(ω),M∞(ω)}+ε− 1
p′ ]

[
ω

(
bi
)]q ∥∥∥ f 1Bi\Bi−1

∥∥∥q

Lp(Rn)



1
q

(5.20)

= C0


∑

i∈Z

∞∑

k=i+τ+1

b
(k−i)q

2
[max{M0(ω),M∞(ω)}+ε− 1

p′ ]
[
ω

(
bi
)]q ∥∥∥ f 1Bi\Bi−1

∥∥∥q

Lp(Rn)



1
q

∼ C0


∑

i∈Z

[
ω

(
bi
)]q ∥∥∥ f 1Bi\Bi−1

∥∥∥q

Lp(Rn)



1
q

≤ [
C0 + ‖T‖Lp(Rn)→Lp(Rn)

] ‖ f ‖K̇ p,q
A,ω

(Rn),

where the implicit positive constants are independent of both T and f .

Second, we deal with I2. By the boundedness of T on Lp(Rn) and the Minkowski inequality,

we find that, for any k ∈ Z,

∥∥∥T ( fk,2)1Bk\Bk−1

∥∥∥
Lp(Rn)

≤
∥∥∥T ( fk,2)

∥∥∥
Lp(Rn)

≤ ‖T‖Lp(Rn)→Lp(Rn)

∥∥∥ fk,2
∥∥∥

Lp(Rn)
(5.21)

≤ ‖T‖Lp(Rn)→Lp(Rn)

τ+2∑

i=−τ

∥∥∥ f 1Bk+i\Bk+i−1

∥∥∥
Lp(Rn)

.

Moreover, from [42, Lemma 1.1.3], it follows that, for any k ∈ Z and i ∈ [−τ, τ + 2] ∩ Z,

ω
(
bk

)
∼ ω

(
bk+i

)
,

which, combined with (5.12) and (5.21), further implies that

I2 ≤ ‖T‖Lp(Rn)→Lp(Rn)


∑

k∈Z

[
ω

(
bk

)]q
τ+2∑

i=−τ

∥∥∥ f 1Bk+i\Bk+i−1

∥∥∥q

Lp(Rn)



1
q

(5.22)

. ‖T‖Lp(Rn)→Lp(Rn)

τ+2∑

i=−τ


∑

k∈Z

[
ω

(
bk+i

)]q ∥∥∥ f 1Bk+i\Bk+i−1

∥∥∥q

Lp(Rn)



1
q

∼ ‖T‖Lp(Rn)→Lp(Rn)


∑

k∈Z

[
ω

(
bk

)]q ∥∥∥ f 1Bk\Bk−1

∥∥∥q

Lp(Rn)



1
q
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≤ [
C0 + ‖T‖Lp(Rn)→Lp(Rn)

] ‖ f ‖K̇ p,q
A,ω

(Rn).

Finally, we deal with I3. By the inequality in line 26 of [4, p. 7], we conclude that, for any

k, i ∈ Z satisfying i ∈ [k + τ + 3,∞) and for any x, y ∈ Rn satisfying x ∈ Bk\Bk−1 and y ∈ Bi\Bi−1,

ρ(x − y) ≥ b−τρ(y) − ρ(x) = bi−τ−1 − bk−1

≥ bi−τ−1 − bi−τ−4 = (b−τ−1 − b−τ−4)bi.

From this, (5.10), and the Hölder inequality, we infer that, for any k ∈ Z and x ∈ Bk\Bk−1,

∣∣∣T ( fk,3)(x)
∣∣∣ ≤ C0

∫

Rn

| fk,3(y)|
ρ(x − y)

dy = C0

∞∑

i=k+τ+3

∫

Bi\Bi−1

| f (y)|
ρ(x − y)

dy(5.23)

. C0

∞∑

i=k+τ+3

b
− i

p

∥∥∥ f 1Bi\Bi−1

∥∥∥
Lp(Rn)

,

where the implicit positive constant is independent of both T and f . Moreover, by (5.14), we

conclude that, for any k, i ∈ Z satisfying i ∈ [k + τ + 3,∞),

ω(bk)

ω(bi)
. b(k−i)[min{m0(ω),m∞(ω)}−ε],

which, combined with (5.23), further implies that, for any k ∈ Z,

ω
(
bk

) ∥∥∥T ( fk,3)1Bk\Bk−1

∥∥∥
Lp(Rn)

(5.24)

. C0ω
(
bk

) ∞∑

i=k+τ+3

b
− i

p

∥∥∥ f 1Bi\Bi−1

∥∥∥
Lp(Rn)

∥∥∥1Bk\Bk−1

∥∥∥
Lp(Rn)

. C0

∞∑

i=k+τ+3

b
1
p

(k−i)ω(bk)

ω(bi)
ω

(
bi
) ∥∥∥ f 1Bi\Bi−1

∥∥∥
Lp(Rn)

. C0

∞∑

i=k+τ+3

b
(k−i)[min{m0(ω),m∞(ω)}−ε+ 1

p
]
ω

(
bi
) ∥∥∥ f 1Bi\Bi−1

∥∥∥
Lp(Rn)

,

where the implicit positive constants are independent of both T and f . From (5.24), (5.13), and an

argument similar to that used in the estimations of (5.18) and (5.20), we deduce that

I3 .
[
C0 + ‖T‖Lp(Rn)→Lp(Rn)

] ‖ f ‖K̇ p,q
A,ω

(Rn),

where the implicit positive constant is independent of both T and f . This, together with (5.12),

(5.18), (5.20), and (5.22), further implies (5.11) and hence finishes the proof of Lemma 5.18. �

The following conclusion is a simple corollary of both (2.5) and Lemma 5.18.

Corollary 5.19. Let A, p, q, and ω be the same as in Lemma 5.18 andM the Hardy–Littlewood

maximal operator in (2.5). Then there exists a positive constant C such that, for any f ∈ K̇ p,q
A,ω

(Rn),

‖M( f )‖K̇ p,q
A,ω

(Rn) ≤ C‖ f ‖K̇ p,q
A,ω

(Rn).
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Now, we show Lemma 5.17.

Proof of Lemma 5.17. Let { f j} j∈N ⊂ L1
loc

(Rn) be any given sequence and, for any r ∈ (1,∞],

g ∈M (Rn), and x ∈ Rn, define

A(g)(x) :=


∑

j∈N

[
M(gξ j)(x)

]r



1
r

,

where, for any j ∈ N and y ∈ Rn,

ξ j(y) :=
f j(y)

[
∑

j∈N | f j(y)|r]1/r
if


∑

j∈N

∣∣∣ f j(y)
∣∣∣r


1/r

, 0

and ξ j(y) := 0 otherwise. Obviously, for any λ ∈ C and g ∈M (Rn),

A(λg) = |λ|A(g).

Moreover, by the Minkowski inequality, we find that, for any g1, g2 ∈M (Rn) and x ∈ Rn,

A(g1 + g2)(x) =


∑

j∈N

[
M

(
[g1 + g2]ξ j

)
(x)

]r



1
r

≤


∑

j∈N

[
M(g1ξ j)(x) +M(g2ξ j)(x)

]r



1
r

≤


∑

j∈N

[
M(g1ξ j)(x)

]r



1
r

+


∑

j∈N

[
M(g2ξ j)(x)

]r



1
r

= A(g1)(x) + A(g2)(x).

Thus, A is sublinear. Next, we prove that A satisfies (5.10). Indeed, notice that, for any y ∈ Rn,


∑

j∈N

∣∣∣ξ j(y)
∣∣∣r


1/r

≤ 1,(5.25)

which, combined with (2.5) and the Minkowski integral inequality, further implies that, for any

x < supp (g),

|A(g)(x)| =


∑

j∈N

[
M(gξ j)(x)

]r



1
r

.


∑

j∈N

[∫

Rn

|g(y)ξ j(y)|
ρ(x − y)

dy

]r


1
r

(5.26)

≤
∫

Rn


∑

j∈N

[ |g(y)ξ j(y)|
ρ(x − y)

]r


1
r

dy ≤
∫

Rn

|g(y)|
ρ(x − y)

dy,
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where the implicit positive constant is independent of { f j} j∈N. Thus, A satisfies (5.10). In addition,

from the Fefferman–Stein vector-valued inequality ofM on the Lebesgue space Lr(Rn) (see, for

instance, [4, p. 104, Theorem 6.2]) and (5.25), we infer that, for any g ∈M (Rn),

‖A(g)‖Lp(Rn) =

∥∥∥∥∥∥∥∥∥


∑

j∈N

[
M(gξ j)

]r



1
r

∥∥∥∥∥∥∥∥∥
Lp(Rn)

(5.27)

.

∥∥∥∥∥∥∥∥∥


∑

j∈N
|gξ j|r



1
r

∥∥∥∥∥∥∥∥∥
Lp(Rn)

≤ ‖g‖Lp(Rn),

where the implicit positive constant is independent of { f j} j∈N. Thus, A satisfies all the assumptions

of Lemma 5.18. This, together with the fact that the implicit positive constants in both (5.26)

and (5.27) are independent of { f j} j∈N, further implies that A is bounded on K̇ p,q
A,ω

(Rn). Letting

g := (
∑

j∈N | f j|r)1/r, by Lemma 5.18, we conclude that

∥∥∥∥∥∥∥∥∥


∑

j∈N

[
M( f j)

]r



1
r

∥∥∥∥∥∥∥∥∥K̇ p,q
A,ω

(Rn)

= ‖A(g)‖K̇ p,q
A,ω

(Rn)

. ‖g‖K̇ p,q
A,ω

(Rn) =

∥∥∥∥∥∥∥∥


∑

j∈N

∣∣∣ f j

∣∣∣r


1/r
∥∥∥∥∥∥∥∥K̇ p,q

A,ω
(Rn)

,

which completes the proof of Lemma 5.17. �

By Lemma 5.17 and an argument similar to that used in the proof of [42, Lemma 4.3.10], we

obtain the following conclusion.

Theorem 5.20. Let A be a dilation, p, q ∈ (0,∞), and ω ∈ M(R+) satisfy m0(ω) ∈ (− 1
p
,∞) and

m∞(ω) ∈ (− 1
p
,∞). Then, for any given r ∈ (1,∞) and

u ∈
(
0,min

{
p,

1

max{M0(ω),M∞(ω)} + 1/p

})
,(5.28)

there exists a positive constant C such that, for any { f j} j∈N ⊂ L1
loc

(Rn),

∥∥∥∥∥∥∥∥∥


∑

j∈N

[
M( f j)

]r



1
r

∥∥∥∥∥∥∥∥∥
[K̇ p,q

A,ω
(Rn)]1/u

≤ C

∥∥∥∥∥∥∥∥∥


∑

j∈N
| f j|r



1
r

∥∥∥∥∥∥∥∥∥
[K̇ p,q

A,ω
(Rn)]1/u

.

Proof. On the one hand, from [42, Lemma 1.3.1], we deduce that

[
K̇ p,q

A,ω
(Rn)

]1/u
= K̇ p/u,q/u

A,ωu (Rn).(5.29)
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On the other hand, applying Lemma 5.14, m0(ω) > − 1
p
, m∞(ω) > − 1

p
, and (5.28), we conclude

that

min{m0(ωu),m∞(ωu)} = u min{m0(ω),m∞(ω)} > − 1

(p/u)

and

max{M0(ωu),M∞(ωu)} = u max{M0(ω),M∞(ω)} < u

(
1

u
− 1

p

)
=

1

(p/u)′
.

These, combined with (5.29) and Lemma 5.17, further implies that

∥∥∥∥∥∥∥∥∥


∑

j∈N

[
M( f j)

]r



1
r

∥∥∥∥∥∥∥∥∥
[K̇ p,q

A,ω
(Rn)]1/u

=

∥∥∥∥∥∥∥∥∥


∑

j∈N

[
M( f j)

]r



1
r

∥∥∥∥∥∥∥∥∥K̇ p/u,q/u

A,ωu (Rn)

.

∥∥∥∥∥∥∥∥∥


∑

j∈N
| f j|r



1
r

∥∥∥∥∥∥∥∥∥K̇ p/u,q/u

A,ωu (Rn)

=

∥∥∥∥∥∥∥∥∥


∑

j∈N
| f j|r



1
r

∥∥∥∥∥∥∥∥∥
[K̇ p,q

A,ω
(Rn)]1/u

,

which completes the proof of Theorem 5.20. �

The following conclusion shows the boundedness of certain powered Hardy–Littlewood maxi-

mal operator on the associate space of certain power of K̇ p,q
A,ω

(Rn); see [42, Lemma 1.8.6] for the

standard Euclidean space case.

Theorem 5.21. Let A be a dilation, p, q ∈ (0,∞), and ω ∈ M(R+) satisfy m0(ω) ∈ (− 1
p
,∞) and

m∞(ω) ∈ (− 1
p
,∞). Then, for any given

s ∈
(
0,min

{
p, q,

1

max{M0(ω),M∞(ω)} + 1/p

})

and

t ∈
(
max

{
p,

1

min{m0(ω),m∞(ω)} + 1/p

}
,∞

]
,

the Herz space [K̇ p,q
A,ω

(Rn)]1/s is a ball Banach function space and there exists a positive constant

C such that, for any f ∈ L1
loc

(Rn),

(5.30)
∥∥∥M((t/s)′)( f )

∥∥∥
([K̇ p,q

A,ω
(Rn)]1/s)′

≤ C ‖ f ‖([K̇ p,q
A,ω

(Rn)]1/s)′ .

To prove this theorem, we need more preparations. By Theorem 5.16 and an argument similar

to that used in the proof of [42, Theorem 1.2.46], we obtain the following conclusion; we omit the

details.
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Lemma 5.22. Let A be a dilation, p, q ∈ [1,∞], and ω ∈ M(R+) satisfy

−1

p
< m0(ω) ≤ M0(ω) <

1

p′
,

where 1
p
+ 1

p′ = 1. Then the anisotropic local generalized Herz space K̇ p,q
A,ω

(Rn) is a ball Banach

function space.

Proof of Theorem 5.21. Obviously,

s <
1

max{M0(ω),M∞(ω)} + 1/p
≤ 1

M0(ω) + 1/p
,

which, combined with Lemma 5.14, further implies that

M0

(
ωs) = sM0 (ω) < s

(
1

s
− 1

p

)
=

1

(p/s)′
(5.31)

and

m0

(
ωs) = sm0 (ω) > − s

p
= − 1

p/s
.(5.32)

From these, an argument similar to that used in the proof of [42, Lemma 1.3.1], the assumptions

that p/s > 1 and q/s > 1, and Lemma 5.22, we infer that

[
K̇ p,q

A,ω
(Rn)

]1/s
= K̇ p/s,q/s

A,ωs (Rn)(5.33)

is a ball Banach function space.

Next, we prove (5.30). On the one hand, by (5.33) and arguments similar to those used in the

proofs of [42, Lemma 1.3.1 and Theorem 1.7.9], we conclude that

[([
K̇ p,q

A,ω
(Rn)

]1/s
)′]1/(t/s)′

=
[
K̇ (p/s)′,(q/s)′

A,1/ωs (Rn)
]1/(t/s)′

(5.34)

= K̇ (p/s)′/(t/s)′ ,(q/s)′/(t/s)′

A,ω−s(t/s)′ (Rn).

On the other hand, from Lemma 5.14 and the assumptions that

s <
1

max{M0(ω),M∞(ω)} + 1/p

and

t >
1

min{m0(ω),m∞(ω)} + 1/p
,

we deduce that

min
{
m0

(
ω−s(t/s)′

)
,m∞

(
ω−s(t/s)′

)}
= −s(t/s)′max{M0 (ω) ,M∞ (ω)}

> −s(t/s)′
(
1

s
− 1

p

)
= − 1

(p/s)′/(t/s)′
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and

max
{
M0

(
ω−s(t/s)′

)
,M∞

(
ω−s(t/s)′

)}
= −s(t/s)′min{m0 (ω) ,m∞ (ω)}

< −s(t/s)′
(
1

t
− 1

p

)
= 1 − 1

(p/s)′/(t/s)′

=
1

[(p/s)′/(t/s)′]′
.

These, together with (5.34) and Corollary 5.19, further imply that

∥∥∥M((t/s)′ )( f )
∥∥∥

([K̇ p,q
A,ω

(Rn)]1/s)′
=

∥∥∥∥M
(
| f |(t/s)′

)∥∥∥∥K̇ (p/s)′/(t/s)′,(q/s)′/(t/s)′

A,ω−s(t/s)′ (Rn)

.
∥∥∥| f |(t/s)′

∥∥∥K̇ (p/s)′/(t/s)′,(q/s)′/(t/s)′

A,ω−s(t/s)′ (Rn)

= ‖ f ‖([K̇ p,q
A,ω

(Rn)]1/s)′ .

This finishes the proof of (5.30) and hence Theorem 5.21. �

Remark 5.23. Let p, q ∈ (0,∞) and ω ∈ M(R+) satisfy m0(ω) ∈ (− 1
p
,∞) and m∞(ω) ∈ (− 1

p
,∞).

Choose

p− := min

{
p, q,

1

max {M0(ω),M∞(ω)} + 1/p

}
, θ0 ∈

(
0, p

)
,

and

p0 ∈
(
max

{
1, p,

1

min {m0(ω),m∞(ω)} + 1/p

}
,∞

)
,

where p is the same as in (2.6). From these and Theorems 5.16, 5.20, and 5.21, we deduce that

K̇ p,q
A,ω

(Rn) satisfies both Assumptions 2.7 and 2.8. Further assume that

N ∈ N ∩





1

min{p, q, 1
max{M0(ω),M∞(ω)}+1/p

}
− 1


ln b

ln(λ−)

 + 2,∞
 .

Then K̇ p,q
A,ω(Rn) satisfies all the assumptions of Definition 2.10. Let HK̇ p,q

A,ω(Rn) be the anisotropic

local generalized Herz–Hardy space defined in Definition 2.10 with X := K̇ p,q
A,ω(Rn). Then the main

results of [59] and [38], for example, the maximal function characterizations of HK̇ p,q
A,ω(Rn) (see

[59, Theorem 3.9]), the (finite) atomic characterizations of HK̇ p,q
A,ω(Rn) (see [59, Theorems 4.3 and

5.4]), the molecular characterization of HK̇ p,q
A,ω

(Rn) (see [59, Theorem 6.3]), the boundedness of

Calderón–Zygmund operators on HK̇ p,q
A,ω

(Rn) (see [59, Theorems 7.10 and 7.11]), the Littlewood–

Paley function characterizations of HK̇ p,q
A,ω

(Rn) (see [38, Theorems 5.4, 5.5, and 5.6]), and the dual

theorem of HK̇ p,q
A,ω

(Rn) (see [38, Theorem 3.25]) still hold true.

Let p, q ∈ (0, 1) and ω ∈ M(R+) satisfy m0(ω) ∈ (− 1
p
,∞) and m∞(ω) ∈ (− 1

p
,∞). Choose

a q0 = 1. By the above discussion, an argument similar to that used in the proof of [42, Lemma

4.9.4], and [42, (4.135)], we find that all the assumptions of Theorems 3.1, 4.1, and 4.2 are satisfied

with X := K̇ p,q
A,ω

(Rn). Applying Theorems 3.1, 4.1, and 4.2, we obtain the following result.
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Theorem 5.24. Let p, q ∈ (0, 1) and ω ∈ M(R+) satisfy m0(ω) ∈ (− 1
p
,∞) and m∞(ω) ∈ (− 1

p
,∞).

Then Theorems 3.1, 4.1, and 4.2 still hold true with X replaced by K̇ p,q
A,ω(Rn).

Remark 5.25. We point out that Theorem 5.24 is completely new. When A := 2In×n, the corre-

sponding results of Theorem 5.24 can be found in [42, Theorem 4.9.1].
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