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Abstract
Let A be a general expansive matrix and let X be a ball quasi-Banach function
space on R

n , whose certain power (namely its convexification) supports a Fefferman–
Stein vector-valued maximal inequality and the associate space of whose other power
supports the boundedness of the powered Hardy–Littlewood maximal operator. The
authors first introduce some anisotropic ball Campanato-type function spaces asso-
ciated with both A and X , prove that these spaces are dual spaces of anisotropic
Hardy spaces H A

X (Rn) associated with both A and X , and obtain various anisotropic
Littlewood–Paley function characterizations of H A

X (Rn). Also, as applications, the
authors establish several equivalent characterizations of anisotropic ball Campanato-
type function spaces, which, combined with the atomic decomposition of tent spaces
associated with both A and X , further induce their Carleson measure characterization.
All these results have a wide range of generality and, particularly, even when they are
applied toMorrey spaces and Orlicz-slice spaces, some of the obtained results are also
new. The novelties of this article are reflected in that, to overcome the essential difficul-
ties caused by the absence of both an explicit expression and the absolute continuity of
the quasi-norm ‖ · ‖X under consideration, the authors embed X under consideration
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into the anisotropic weighted Lebesgue space with certain special weight and then
fully use the known results of this weighted Lebesgue space.

Keywords Expansive matrix · Ball quasi-Banach function space · Hardy space ·
Campanato-type function space · Duality · Littlewood–Paley function · Carleson
measure
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1 Introduction

Recall that the dual theory of classical Hardy spaces on the Euclidean space R
n plays

an important role in many branches of analysis, such as harmonic analysis and partial
differential equations, and has been systematically considered and developed so far;
see, for instance, [29, 67]. Indeed, in 1969, Duren et al. [27] first identified the Lipshitz
space with the dual space of the Hardy space H p(D) of holomorphic functions, where
p ∈ (0, 1) and the symbol D denotes the unit disc of C. Later, Walsh [81] further
extended this dual result to the Hardy space on the upper half-plane R

n+1+ := R
n ×

(0,∞). On the realHardy spaces, the famous dual theorem, that is, the spaceBMO(Rn)

of functions with bounded mean oscillation is the dual space of the Hardy space
H1(Rn), is due to Fefferman and Stein [29]. Moreover, it is worth pointing out that
the complete dual theory of the Hardy space H p(Rn) with p ∈ (0, 1] was given
by Taibleson and Weiss [75], in which the dual space of H p(Rn) proves the special
Campanato space introduced by Campanato [15].

Recently, Sawano et al. [69] originally introduced the ball quasi-Banach function
space X which further generalizes the Banach function space in [3] in order to include
weighted Lebesgue spaces,Morrey spaces, mixed-normLebesgue spaces, Orlicz-slice
spaces, andMusielak–Orlicz spaces. Observe that the aforementioned several function
spaces are not quasi-Banach function spaces which were originally introduced in
[3, Definitions 1.1 and 1.3]; see, for instance, [69, 72, 83, 90]. In the same article
[69], Sawano et al. also introduced the Hardy space HX (Rn), associated with X ,
and established its various maximal function characterizations by assuming that the
Hardy–Littlewood maximal operator is bounded on the p-convexification of X , as
well as its several other real-variable characterizations, respectively, in terms of atoms,
molecules, and Lusin area functions by assuming that the Hardy–Littlewood maximal
operator satisfies aFefferman–Stein vector-valued inequality on certain power (namely
its convexification) of X and the powered Hardy–Littlewood maximal operator is
bounded on the associate space of certain power of X .

Later, Wang et al. [82] further established the Littlewood–Paley g-function and the
Littlewood–Paley g∗λ-function characterizations of both HX (Rn) and its local version
hX (Rn) and obtained the boundedness of Calderón–Zygmund operators and pseudo-
differential operators, respectively, on HX (Rn) and hX (Rn); Yan et al. [87] established
the dual theorem and the intrinsic square function characterizations of HX (Rn); Zhang
et al. [89] introduced some new ball Campanato-type function space which proves the
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dual space of HX (Rn) and established its Carleson measure characterization. Very
recently, on spaces X of homogeneous type, Yan et al. [85, 86] introduced ball quasi-
Banach function spaces Y (X ) and Hardy-type spaces HY (X ), associated with Y (X ),
and developed a complete real-variable theory of HY (X ). For more studies about ball
quasi-Banach function spaces, we refer the reader to [16, 43, 44, 68, 74, 77, 88].

On the other hand, starting from 1970s, there has been an increasing interesting in
extending classical function spaces arising in harmonic analysis from R

n to various
anisotropic settings and some other underlying spaces; see, for instance, [21, 31–33,
35, 65, 73, 76, 78, 79]. The study of function spaces on R

n associated with anisotropic
dilations was originally started from the celebrated articles [12–14] of Calderón and
Torchinsky on anisotropic Hardy spaces. In 2003, Bownik [4] introduced and inves-
tigated the anisotropic Hardy space H p

A (Rn) with p ∈ (0,∞), where A is a general
expansivematrix onR

n . Since then, various variants of classical Hardy spaces over the
anisotropic Euclidean space have been introduced and their real-variable theories have
been systematically developed. To be precise, Bownik et al. [7] further extended the
anisotropicHardy space to theweighted setting. Li et al. [50] introduced the anisotropic
Musielak–Orlicz Hardy space Hϕ

A(Rn), where ϕ is an anisotropic Musielak–Orlicz
function, and characterized Hϕ

A(Rn) by several maximal functions and atoms. Liu
et al. [62, 64] first introduced the anisotropic Hardy–Lorentz space H p,q

A (Rn), with
p ∈ (0, 1] and q ∈ (0,∞], and established their several real-variable characteriza-
tions, respectively, in terms of atoms or finite atoms, molecules, maximal functions,
and Littlewood–Paley functions, which are further applied to obtain the real interpo-
lation theorem of H p,q

A (Rn) and the boundedness of anisotropic Calderón–Zygmund
operators on H p,q

A (Rn) including the critical case. Liu et al. [56, 60] and Huang et al.
[39] further generalized the corresponding results in [62, 64] to variable Hardy spaces
andmixed-normHardy spaces, respectively. Recently, Liu et al. [61, 63] introduced the
anisotropic variable Hardy–Lorentz space H p(·),q

A (Rn), where p(·) : R
n → (0,∞]

is a variable exponent function satisfying the globally log-Hölder continuous condi-
tion and q ∈ (0,∞], and developed a complete real-variable theory of these spaces
including various equivalent characterizations and the boundedness of sublinear oper-
ators. Independently, Almeida et al. [1] also investigated the anisotropic variable
Hardy–Lorentz space H p(·),q(·)(Rn, A), where p(·) and q(·) are nonnegative mea-
surable functions on (0,∞). In [1], equivalent characterizations of H p(·),q(·)(Rn, A)

in terms of maximal functions and atoms were established. It is remarkable that the
anisotropic variable Hardy–Lorentz space H p(·),q(·)(Rn, A) in [1] and that in [61, 63]
can not cover each other because the variable exponent p(·) in [1] is only defined
on (0,∞), instead of R

n . Particularly, Huang et al. [40, 41] further enriched the
real-variable theory of anisotropic mixed-norm Campanato spaces and anisotropic
variable Campanato spaces and established the dual theory of both anisotropic Hardy
spaces H �p

A (Rn) and H p(·)
A (Rn) with the full ranges of both �p and p(·). For more stud-

ies about function spaces on the anisotropic Euclidean space, we refer the reader to
[5, 8, 19, 20, 47, 48, 51].

Recall that the anisotropic Hardy space H A
X (Rn) associated with both A and X was

first introduced and studied by Wang et al. [84], in which they characterized H A
X (Rn)

in terms of maximal functions, atoms, finite atoms, and molecules and obtained the
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boundedness of the anisotropic Calderón–Zygmund operators on H A
X (Rn). Motivated

by this and [89], a quite natural question arises: can we prove whether or not the
dual space of H A

X (Rn) is the anisotropic ball Campanato-type function space and
characterize this space by the Carleson measure? The main target of this article is
to give an affirmative answer to this question. Indeed, to answer this question and
also to enrich the real-variable theory of anisotropic Campanato spaces associated
with both A and X , in this article, by borrowing some ideas from [89], namely con-
sidering finite linear combinations of atoms as a whole instead of a single atom, we
introduce the anisotropic ball Campanato-type function space and give some applica-
tions. Using this and the additional assumptions that the Hardy–Littlewood maximal
operator satisfies some Fefferman–Stein vector-valued inequality on certain power of
X and the powered Hardy–Littlewood maximal operator is bounded on the associate
space of certain power of X , we get rid of the dependence on the concavity of ‖ · ‖X
and prove that the dual space of H A

X (Rn) is just the anisotropic ball Campanato-type
function space. From this, we further deduce several equivalent characterizations of
anisotropic ball Campanato-type function spaces. Moreover, via embedding X into a
certain anisotropicweighted Lebesgue space, we overcome the difficulty caused by the
absence of both an explicit expression and the absolute continuity of the quasi-norm
‖ · ‖X under consideration and establish the anisotropic Littlewood–Paley characteri-
zations of H A

X (Rn), which, together with the dual theorem of H A
X (Rn) and the atomic

decomposition of anisotropic tent spaces associated with X , finally imply the Carleson
measure characterization of anisotropic ball Campanato-type function spaces.

It is remarkable that the results obtained in this article have a wide range of gener-
ality because ball quasi-Banach function spaces include so many important function
spaces. Particularly, when X becomes the Morrey space, the Littlewood–Paley func-
tion characterizations of anisotropic Hardy–Morrey spaces are new while the dual
theorem and the Carleson measure characterization are not applicable because Mor-
rey spaces do not have any absolutely continuous quasi-norm; when X becomes the
Orlicz-slice space, the obtained results are completely new; when X becomes the
weighted Lebesgue space or the Orlicz space, the dual theorem and the Carleson mea-
sure characterization are new while the Littlewood–Paley function characterizations
of anisotropic Hardy-type spaces were obtained in [49]; when X becomes the Lorentz
space, the variable Lebesgue space, or the mixed-norm Lebesgue space, the obtained
results coincide with those in [39–41, 59, 60, 64]. Obviously, due to the flexibility and
the operability, more applications of these results obtained in this article to newfound
function spaces are completely possible.

The remainder of this article is organized as follows.
In Sect. 2, we recall some notation and concepts which are used throughout this

article. More precisely, we first recall the definitions of the expansive matrix A, the
step homogeneous quasi-normρ, and the ball quasi-Banach function space X . Thenwe
make somemild assumptions on the boundedness of the (powered) Hardy–Littlewood
maximal operator on both certain power of X and its associate space, which are needed
throughout this article. Finally, we recall the concept of the non-tangential (grand)
maximal function.

The aim of Sect. 3 is to give the dual space of the anisotropic Hardy space
H A
X (Rn) (see Theorem 3.15 below). To this end, we first introduce the anisotropic
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ball Campanato-type function space LA
X ,q,d,s(R

n) (see Definition 3.3 below) and give

an equivalent quasi-normcharacterization ofLA
X ,q,d,s(R

n) (seeProposition 3.5 below).
Using these, both the known atomic and the known finite atomic characterizations of
H A
X (Rn), and the assumptions that the Hardy–Littlewood maximal operator satisfies

some Fefferman–Stein vector-valued inequality on certain power of X and the pow-
ered Hardy–Littlewood maximal operator is bounded on the associate space of certain
power of X , we prove that the dual space of H A

X (Rn) is just LA
X ,q ′,d,θ0

(Rn). At the end

of this section, we also give its invariance of LA
X ,q,d,s(R

n) on different indices q and
d; see Corollary 3.16 below.

In Sect. 4, applying the dual result obtained in Theorem 3.15 and a key estimate (see
Lemma 4.2 below), we obtain several equivalent characterizations of LA

X ,q,d,θ0
(Rn)

(see Theorems 4.1 and 4.3 below), which are further applied to establish the Carleson
measure characterization of LA

X ,1,d,θ0
(Rn) in Sect. 6.

Section 5 is devoted to establishing the anisotropic Littlewood–Paley function
characterization of H A

X (Rn), including the anisotropic Lusin area function, the
anisotropic Littlewood–Paley g-function, and the anisotropic Littlewood–Paley g∗λ-
function, respectively, in Theorems 5.4, 5.5, and 5.6 below.Wefirst proveTheorem5.4.
To this end, we first show that the quasi-norms in X of the anisotropic Lusin area func-
tions defined by different Schwartz functions are equivalent (see Theorem 5.7 below).
Then, via borrowing some ideas from [64] and the anisotropic Calderón reproducing
formula (see Lemma 5.2 below), we complete the proof of Theorem 5.4. From this
and an approach initiated by Ullrich [80] and further developed by Liang et al. [55]
and Liu et al. [61], together with Fefferman–Stein vector-valued inequality on certain
power of X , we obtain the anisotropic Littlewood–Paley g-function and the anisotropic
Littlewood–Paley g∗λ-function characterizations.

In Sect. 6, we establish the Carleson measure characterization ofLA
X ,1,d,θ0

(Rn) (see
Theorem 6.3 below). Indeed, via using Theorems 3.15, 4.1, and 5.4, as well as the
atomic decomposition of anisotropic tent spaces associated with X (see Lemma 6.7
below), we show that a measurable function h belongs to LA

X ,1,d,θ0
(Rn) if and only

if h generates an X–Carleson measure dμ. Moreover, the norm of the X–Carleson
measure dμ is equivalent to the LA

X ,1,d,θ0
(Rn)-norm of h.

In Sect. 7, we apply all the main results obtained in the above sections to sev-
eral specific ball quasi-Banach function spaces. Particularly, the results about Morrey
spaces andOrlicz-slice spaces are completely newand stated, respectively, in Sects. 7.1
and 7.2; part of the results about weighted Lebesgue spaces and Orlicz spaces obtained
in this article are new and stated, respectively, in Sects. 7.6 and 7.7; the results about
Lorentz spaces, variable Lebesgue spaces, and mixed-norm Lebesgue spaces coincide
with the known ones, which are successively stated in Sects. 7.3, 7.4, and 7.5.

At the end of this section, we make some conventions on notation. Let N :=
{1, 2, . . .},Z+ := N∪{0},Zn+ := (Z+)n , and 0 be the origin ofRn . For anymulti-index
α := (α1, . . . , αn) ∈ Z

n+ and any x := (x1, . . . , xn) ∈ R
n , let |α| := α1 + · · · + αn ,

∂α := ( ∂
∂x1

)α1 · · · ( ∂
∂xn

)αn , and xα := xα1
1 · · · xαn

n . We denote by C a positive constant
which is independent of the main parameters, but may vary from line to line. We use
C(α,... ) to denote a positive constant depending on the indicated parameters α, . . . .
The symbol f � g means f ≤ Cg. If f � g and g � f , we then write f ∼ g. If
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f ≤ Cg and g = h or g ≤ h, we then write f � g = h or f � g ≤ h. For any
q ∈ [1,∞], we denote by q ′ its conjugate index, that is, 1/q + 1/q ′ = 1. For any
x ∈ R

n , we denote by |x | the n-dimensional Euclidean metric of x . If E is a subset
of R

n , we denote by 1E its characteristic function and by E� the set R
n\E . For any

r ∈ (0,∞) and x ∈ R
n , we denote by B(x, r) the ball centered at x with the radius

r , that is, B(x, r) := {y ∈ R
n : |x − y| < r}. For any ball B, we use xB to denote

its center and rB its radius, and denote by λB for any λ ∈ (0,∞) the ball concentric
with B having the radius λrB . We also use ε → 0+ to denote ε ∈ (0,∞) and ε → 0.
Let X and Y be two normed vector spaces, respectively, with the norm ‖ · ‖X and the
norm ‖ · ‖Y ; then we use X ↪→ Y to denote X ⊂ Y and there exists a positive constant
C such that, for any f ∈ X , ‖ f ‖Y ≤ C‖ f ‖X . For any measurable function f on R

n

and any measurable set E ⊂ R
n with |E | ∈ (0,∞), let

 
E
f (x) dx := 1

|E |
ˆ
E
f (x) dx .

At last, when we prove a theorem or the like, we always use the same symbols in the
wanted proved theorem or the like.

2 Preliminaries

In this section, we first recall some notation and concepts on dilations (see, for instance
[4, 36]) as well as ball quasi-Banach function spaces (see, for instance, [69, 82, 83,
87, 90]). We begin with recalling the concept of the expansive matrix from [4].

Definition 2.1 A real n×n matrix A is called an expansive matrix (shortly, a dilation)
if

min
λ∈σ(A)

|λ| > 1,

here and thereafter, σ(A) denotes the set of all eigenvalues of A.

Let A := (ai, j )1≤i, j≤n be a dilation. Then let

b := | det A|, (2.1)

where det A denotes the determinant of A, and define the matrix norm ‖A‖ by setting

‖A‖ :=
⎛
⎝

n∑
i, j=1

|ai, j |2
⎞
⎠

1/2

. (2.2)

Then it follows from [4, p. 6, (2.7)] that b ∈ (1,∞). By the fact that there exists an open
and symmetry ellipsoid�, with |�| = 1, and an r ∈ (1,∞) such that� ⊂ r� ⊂ A�

(see [4, p. 5, Lemma 2.2]), we find that, for any k ∈ Z,

Bk := Ak� (2.3)
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is open, Bk ⊂ r Bk ⊂ Bk+1, and |Bk | = bk . For any x ∈ R
n and k ∈ Z, the ellipsoid

x + Bk is called a dilated ball. In what follows, we always let B be the set of all such
dilated balls, that is,

B := {x + Bk : x ∈ R
n, k ∈ Z} (2.4)

and let
τ := inf

{
l ∈ Z : rl ≥ 2

}
. (2.5)

Let λ−, λ+ ∈ (0,∞) satisfy that

1 < λ− < min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} < λ+. (2.6)

We point out that, if A is diagonalizable over R, then we may let

λ− := min{|λ| : λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}.

Otherwise, we may choose them sufficiently close to these equalities in accordance
with what we need in our arguments.

The following definition of the homogeneous quasi-norm is just [4, p. 6, Definition
2.3].

Definition 2.2 A homogeneous quasi-norm, associated with a dilation A, is a measur-
able mapping  : R

n → [0,∞) such that

(i) (x) = 0⇐⇒ x = 0, where 0 denotes the origin of R
n ;

(ii) (Ax) = b(x) for any x ∈ R
n ;

(iii) there exists an A0 ∈ [1,∞) such that, for any x, y ∈ R
n ,

(x + y) ≤ A0 [(x)+ (y)].

In the standard Euclidean space case, let A := 2 In×n and, for any x ∈ R
n , (x) :=

|x |n . Then  is an example of homogeneous quasi-norms associated with A on R
n .

Here and thereafter, In×n always denotes the n × n unit matrix and | · | the Euclidean
norm in R

n .
For a fixed dilation A, by [4, p. 6, Lemma 2.4], we define the following quasi-norm

which is used throughout this article.

Definition 2.3 Define the step homogeneous quasi-norm ρ on R
n , associated with the

dilation A, by setting

ρ(x) :=
{
bk if x ∈ Bk+1 \ Bk,

0 if x = 0,

where b is the same as in (2.1) and, for any k ∈ Z, Bk the same as in (2.3).

Then (Rn, ρ, dx) is a space of homogeneous type in the sense of Coifman and
Weiss [23], where dx denotes the n-dimensional Lebesgue measure. For more studies
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on the real-variable theory of function spaces over spaces of homogeneous type, we
refer the reader to [9–11, 52–54].

Throughout this article, we always let A be a dilation inDefinition 2.1, b the same as
in (2.1), ρ the step homogeneous quasi-norm in Definition 2.3, B the set of all dilated
balls in (2.4),M (Rn) the set of all measurable functions on R

n , and Bk for any k ∈ Z

the same as in (2.3). Now, we recall the definition of ball quasi-norm Banach function
spaces (see [69]).

Definition 2.4 A quasi-normed linear space X ⊂ M (Rn), equipped with a quasi-
norm ‖ · ‖ which makes sense for the whole M (Rn), is called a ball quasi-Banach
function space if it satisfies

(i) for any f ∈M (Rn), ‖ f ‖X = 0 implies that f = 0 almost everywhere;
(ii) for any f , g ∈M (Rn), |g| ≤ | f | almost everywhere implies that‖g‖X ≤ ‖ f ‖X ;
(iii) for any { fm}m∈N ⊂ M (Rn) and f ∈ M (Rn), 0 ≤ fm ↑ f as m →∞ almost

everywhere implies that ‖ fm‖X ↑ ‖ f ‖X as m →∞;
(iv) 1B ∈ X for any dilated ball B ∈ B.
Moreover, a ball quasi-Banach function space X is called a ball Banach function

space if it satisfies:

(v) for any f , g ∈ X , ‖ f + g‖X ≤ ‖ f ‖X + ‖g‖X ;
(vi) for any given dilated ball B ∈ B, there exists a positive constant C(B) such that,

for any f ∈ X , ˆ
B
| f (x)| dx ≤ C(B)‖ f ‖X .

Remark 2.5 (i) As was mentioned in [84, Remark 2.5(i)], if f ∈ M (Rn), then
‖ f ‖X = 0 if and only if f = 0 almost everywhere; if f , g ∈ M (Rn) and
f = g almost everywhere, then ‖ f ‖X ∼ ‖g‖X with the positive equivalence
constants independent of both f and g.

(ii) As was mentioned in [84, Remark 2.5(ii)], if we replace any dilated ball B ∈ B
in Definition 2.4 by any bounded measurable set E or by any ball B(x, r) with
x ∈ R

n and r ∈ (0,∞), we obtain its another equivalent formulation.
(iii) By [26, Theorem 2], we find that both (ii) and (iii) of Definition 2.4 imply that

any ball quasi-Banach function space is complete.

Now, we recall the concepts of the p-convexification and the concavity of ball
quasi-Banach function spaces, which is a part of [69, Definition 2.6].

Definition 2.6 Let X be a ball quasi-Banach function space and p ∈ (0,∞).

(i) The p-convexification X p of X is defined by setting

X p := {
f ∈M (Rn) : | f |p ∈ X

}

equipped with the quasi-norm ‖ f ‖X p := ‖| f |p‖1/pX for any f ∈ X p.
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(ii) The space X is said to be concave if there exists a positive constant C such that,
for any { fk}k∈N ⊂M (Rn),

∞∑
k=1

‖ fk‖X ≤ C

∥∥∥∥∥
∞∑
k=1

| fk |
∥∥∥∥∥
X

.

In particular, when C = 1, X is said to be strictly concave.

The associate space X ′ of any given ball Banach function space X is defined as
follows; see [3, Chapter 1, Sect. 2] or [69, p. 9].

Definition 2.7 For any given ball Banach function space X , its associate space (also
called the Köthe dual space) X ′ is defined by setting

X ′ :=
{
f ∈M (Rn) : ‖ f ‖X ′ := sup

g∈X , ‖g‖X=1
‖ f g‖L1(Rn) < ∞

}
,

where ‖ · ‖X ′ is called the associate norm of ‖ · ‖X .
Remark 2.8 From [69, Proposition 2.3], we deduce that, if X is a ball Banach function
space, then its associate space X ′ is also a ball Banach function space.

Next, we recall the concept of absolutely continuous quasi-norms of X as follows
(see [82, Definition 3.2] for the classical Euclidean space case and [85, Definition 6.1]
for the case of spaces of homogeneous type).

Definition 2.9 Let X be a ball quasi-Banach function space. A function f ∈ X is
said to have an absolutely continuous quasi-norm in X if ‖ f 1E j ‖X ↓ 0 whenever
{E j }∞j=1 is a sequence of measurable sets satisfying E j ⊃ E j+1 for any j ∈ N and⋂∞

j=1 E j = ∅. Moreover, X is said to have an absolutely continuous quasi-norm if,
for any f ∈ X , f has an absolutely continuous quasi-norm in X .

Now, we recall the concept of the Hardy–Littlewood maximal operator. Let
L1
loc(R

n) denote the set of all locally integrable functions on R
n . Recall that the

Hardy–Littlewood maximal operator M( f ) of f ∈ L1
loc(R

n) is defined by setting,
for any x ∈ R

n ,

M( f )(x) := sup
k∈Z

sup
y∈x+Bk

 
y+Bk

| f (z)| dz = sup
x∈B∈B

 
B
| f (z)| dz,

where B is the same as in (2.4) and the last supremum is taken over all balls B ∈ B.
For any given α ∈ (0,∞), the powered Hardy–Littlewood maximal operatorM(α) is
defined by setting, for any f ∈ L1

loc(R
n) and x ∈ R

n ,

M(α)( f )(x) := {M (| f |α) (x)} 1
α .
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Throughout this article, we also need the following two fundamental assumptions

about the boundedness of M on the 1
p -convexification X

1
p of the given ball quasi-

Banach function space X and the boundedness of a certain poweredHardy–Littlewood
maximal operator on the associate space of the 1

θ0
-convexification of X .

Assumption 2.10 Let X be a ball quasi-Banach function space. Assume that there
exists a p− ∈ (0,∞) such that, for any p ∈ (0, p−) and u ∈ (1,∞), there exists a
positive constantC , depending on both p and u, such that, for any { fk}∞k=1 ⊂M (Rn),

∥∥∥∥∥∥

{ ∞∑
k=1

[M ( fk)]
u

} 1
u

∥∥∥∥∥∥
X

1
p

≤ C

∥∥∥∥∥∥

{ ∞∑
k=1

| fk |u
} 1

u

∥∥∥∥∥∥
X

1
p

.

Remark 2.11 Let X be a ball-Banach function space. Suppose that M is bounded on
both X and X ′. By an argument similar to that used in the proof of [24, Theorem 4.10],
we find that M satisfies Assumption 2.10 with p− = 1.

In what follows, for any given p− ∈ (0,∞), we always let

p := min{p−, 1}. (2.7)

Assumption 2.12 Let p− ∈ (0,∞) and X be a ball quasi-Banach function space.
Assume that there exists a θ0 ∈ (0, p), with p the same as in (2.7), and a p0 ∈ (θ0,∞)

such that X1/θ0 is a ball Banach function space and, for any f ∈ (X1/θ0)′,
∥∥∥M((p0/θ0)′)( f )

∥∥∥
(X1/θ0 )′

≤ C‖ f ‖(X1/θ0 )′,

where C is a positive constant, independent of f , and 1
p0/θ0

+ 1
(p0/θ0)′ = 1.

Next, recall that a Schwartz function is a function ϕ ∈ C∞(Rn) satisfying that, for
any k ∈ Z+ and any multi-index α ∈ Z

n+,

‖ϕ‖α,k := sup
x∈Rn

[ρ(x)]k |∂αϕ(x)| < ∞.

Denote by S(Rn) the set of all Schwartz functions, equipped with the topology deter-
mined by {‖ · ‖α,k}α∈Z

n+,k∈Z+ . Then S ′(Rn) is defined to be the dual space of S(Rn),
equipped with the weak-∗ topology. For any N ∈ Z+, let

SN (Rn) := {
ϕ ∈ S(Rn) : ‖ϕ‖α,k ≤ 1, |α| ≤ N , k ≤ N

}
,
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equivalently,

ϕ ∈ SN (Rn) ⇐⇒
‖ϕ‖SN (Rn) := sup

|α|≤N
sup
x∈Rn

max{1, [ρ(x)]N }|∂αϕ(x)| ≤ 1.

In what follows, for any ϕ ∈ S(Rn) and k ∈ Z, let ϕk(·) := b−kϕ(A−k ·).
Definition 2.13 Letϕ ∈ S(Rn) and f ∈ S ′(Rn). The non-tangentialmaximal function
Mϕ( f ) with respect to ϕ is defined by setting, for any x ∈ R

n ,

Mϕ( f )(x) := sup
k∈Z, y∈x+Bk

| f ∗ ϕk(y)| .

Moreover, for any given N ∈ N, the non-tangential grand maximal function MN ( f )
is defined by setting, for any x ∈ R

n ,

MN ( f )(x) := sup
ϕ∈SN (Rn)

Mϕ( f )(x). (2.8)

3 Duality between HA
X (R

n) andLA
X,q′,d,�0

(Rn)

In this section, we provide a description of the dual space of the anisotropic Hardy
space H A

X (Rn) associated with ball quasi-Banach function space X . This description
is a consequence of the definition of the anisotropic ball Campanato-type function
space, the atomic and the finite atomic characterizations of H A

X (Rn) from [84], as
well as some basic tools from functional analysis. To state the dual theorem, we first
present the definition of H A

X (Rn) from [84] as follows. In what follows, for any α ∈ R,
we denote by �α� the largest integer not greater than α.

Definition 3.1 Let A be a dilation and X a ball quasi-Banach function space satisfying
both Assumption 2.10 with p− ∈ (0,∞) and Assumption 2.12 with the same p−,
θ0 ∈ (0, p), and p0 ∈ (θ0,∞), where p is the same as in (2.7). Assume that

N ∈ N ∩
[⌊(

1

θ0
− 1

)
ln b

ln(λ−)

⌋
+ 2,∞

)
. (3.1)

The anisotropic Hardy space H A
X , N (Rn), associated with both A and X , is defined by

setting
H A
X , N (Rn) := {

f ∈ S ′(Rn) : ‖MN ( f )‖X < ∞}
,

where MN ( f ) is the same as in (2.8). Moreover, for any f ∈ H A
X , N (Rn), let

‖ f ‖H A
X , N (Rn) := ‖MN ( f )‖X .
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Let A be a dilation and X the same as in Definition 3.1. In the remainder of this
article, we always let

NX , A :=
⌊(

1

θ0
− 1

)
ln b

ln(λ−)

⌋
+ 2. (3.2)

Remark 3.2 (i) As was mentioned in [84, Remark 2.17(i)], the space H A
X , N (Rn) is

independent of the choice of N as long as N ∈ N ∩ [NX , A,∞). In what follows,
when N ∈ N ∩ [NX , A,∞), we write H A

X , N (Rn) simply by H A
X (Rn).

(ii) We point out that, if A := 2 In×n , then H A
X (Rn) coincides with HX (Rn) which

was introduced by Sawano et al. in [69].

In what follows, for any d ∈ Z+, Pd(R
n) denotes the set of all the polynomials

on R
n with degree not greater than d; for any ball B ∈ B and any locally integrable

function g on R
n , we use Pd

Bg to denote the minimizing polynomial of g with degree
not greater than d, which means that Pd

Bg is the unique polynomial f ∈ Pd(R
n) such

that, for any h ∈ Pd(R
n),

ˆ
B
[g(x)− f (x)]h(x) dx = 0.

Next, we introduce the anisotropic ball Campanato-type function space associated
with the ball quasi-Banach function space. In what follows, we use Lq

loc (Rn) to denote
the set of all q-order locally integrable functions on R

n .

Definition 3.3 Let A be a dilation, X a ball quasi-Banach function space, q ∈ [1,∞),
d ∈ Z+, and s ∈ (0,∞). Then the anisotropic ball Campanato-type function space
LA
X ,q,d,s(R

n), associated with X , is defined to be the set of all the f ∈ Lq
loc(R

n) such
that

‖ f ‖LA
X ,q,d,s (R

n) := sup

∥∥∥∥∥∥

{
m∑
i=1

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
m∑
j=1

λ j |B( j)|
‖1B( j)‖X

[ 
B( j)

∣∣∣ f (x)− Pd
B( j) f (x)

∣∣∣q dx

] 1
q

is finite, where the supremum is taken over allm ∈ N, {B( j)}mj=1 ⊂ B, and {λ j }mj=1 ⊂
(0,∞).

Remark 3.4 Let A, X , q, d, and s be the same as in Definition 3.3.

(i) If we have the basic assumption that ‖{∑m
i=1[ λi‖1B(i)‖X ]s1B(i)} 1s ‖−1X ∈ (0,∞), the

index m in Definition 3.3 can be chosen as∞; see Proposition 3.5 below.
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(ii) Obviously, Pd(R
n) ⊂ LA

X ,q,d,s(R
n). Indeed, ‖ f ‖LA

X ,q,d,s (R
n) = 0 if and only if

f ∈ Pd(R
n). Throughout this article, we always identify f ∈ LA

X ,q,d,s(R
n)with

{ f + P : P ∈ Pd(R
n)}.

(iii) For any f ∈ Lq
loc(R

n), define

‖| f ‖|LA
X ,q,d,s (R

n) : = sup inf

∥∥∥∥∥∥

{
m∑
i=1

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
m∑
j=1

λ j |B( j)|
‖1B( j)‖X

[ 
B( j)

| f (x)− P(x)|q dx

] 1
q

,

where the supremum is taken the same way as in Definition 3.3 and the infimum
is taken over all the P ∈ Pd(R

n). Then, similarly to the proof of [87, Lemma
2.6] with using [4, p. 49, (8.9)] instead of [87, Lemma 2.5], we easily find that
‖| · ‖|LA

X ,q,d,s (R
n) is an equivalent quasi-norm of LA

X ,q,d,s(R
n).

Moreover, for the anisotropic ball Campanato-type function space LA
X ,q,d,s(R

n),
we have the following equivalent quasi-norm.

Proposition 3.5 Let A, X, q, d, and s be the same as in Definition 3.3. For any
f ∈ Lq

loc(R
n), define

‖̃ f ‖LA
X ,q,d,s (R

n) := sup

∥∥∥∥∥∥

{∑
i∈N

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
∑
j∈N

λ j |B( j)|
‖1B( j)‖X

[ 
B( j)

∣∣∣ f (x)− Pd
B( j) f (x)

∣∣∣q dx

] 1
q

,

where the supremum is taken over all {B( j)} j∈N ⊂ B and {λ j } j∈N ⊂ (0,∞) satisfying
that

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈N

[
λ j

‖1B( j)‖X
]s

1B( j)

⎫⎬
⎭

1
s

∥∥∥∥∥∥∥
X

∈ (0,∞). (3.3)

Then, for any f ∈ Lq
loc(R

n),

‖̃ f ‖LA
X ,q,d,s (R

n) = ‖ f ‖LA
X ,q,d,s (R

n).

Proof Let f ∈ Lq
loc(R

n). Obviously,

‖ f ‖LA
X ,q,d,s (R

n) ≤ ‖̃ f ‖LA
X ,q,d,s (R

n). (3.4)
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Conversely, let {B( j)} j∈N ⊂ B and {λ j } j∈N ⊂ (0,∞) satisfy (3.3). From Defini-
tion 2.4(iii), it follows that

lim
m→∞

∥∥∥∥∥∥

{
m∑
i=1

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
m∑
j=1

λ j |B( j)|
‖1B( j)‖X

[ 
B( j)

∣∣∣ f (x)− Pd
B( j) f (x)

∣∣∣q dx

] 1
q

=
∥∥∥∥∥∥

{∑
i∈N

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
∑
j∈N

λ j |B( j)|
‖1B( j)‖X

[ 
B( j)

∣∣∣ f (x)− Pd
B( j) f (x)

∣∣∣q dx

] 1
q

.

Therefore, for any ε ∈ (0,∞), there exists an m0 ∈ N such that

∥∥∥∥∥∥

{∑
i∈N

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
∑
j∈N

λ j |B( j)|
‖1B( j)‖X

[ 
B( j)

∣∣∣ f (x)− Pd
B( j) f (x)

∣∣∣q dx

] 1
q

<

∥∥∥∥∥∥

{
m0∑
i=1

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
m0∑
i=1

λ j |B( j)|
‖1B( j)‖X

[ 
B( j)

∣∣∣ f (x)− Pd
B( j) f (x)

∣∣∣q dx

] 1
q + ε

≤ ‖ f ‖LA
X ,q,d,s (R

n) + ε,

which, together with the arbitrariness of both {B( j)} j∈N ⊂ B and {λ j } j∈N ⊂ (0,∞)

satisfying (3.3) and ε ∈ (0,∞), further implies that

‖̃ f ‖LA
X ,q,d,s (R

n) ≤ ‖ f ‖LA
X ,q,d,s (R

n).

This, combined with (3.4), then finishes the proof of Proposition 3.5. ��
Now, we introduce another anisotropic ball Campanato-type function space

LA
X ,q,d(R

n) associated with the ball quasi-Banach function space X .
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Definition 3.6 Let A be a dilation, X a ball quasi-Banach function space, q ∈ [1,∞),
and d ∈ Z+. Then the Campanato space LA

X ,q,d(R
n), associated with both A and X ,

is defined to be the set of all the f ∈ Lq
loc(R

n) such that

‖ f ‖LA
X ,q,d (Rn) := sup

B∈B
|B|

‖1B‖X
{ 

B

∣∣∣ f (x)− Pd
B f (x)

∣∣∣q dx

} 1
q

< ∞,

where the supremum is taken over all the balls B ∈ B and Pd
B f denotes theminimizing

polynomial of f with degree not greater than d.

Remark 3.7 Let A, X , q, d, and s be the same as in Definition 3.3.

(i) From Definitions 3.3 and 3.6, it immediately follows that LA
X ,q,d,s(R

n) ⊂
LA
X ,q,d(R

n) and this inclusion is continuous.

(ii) For any f ∈ Lq
loc(R

n), define

‖| f ‖|LA
X ,q,d (Rn) := sup

B∈B
inf

P∈Pd (Rn)

|B|
‖1B‖X

[ 
B
| f (x)− P(x)|q dx

] 1
q

.

Then, similarly to [87, Lemma 2.6], we find that ‖| · ‖|LA
X ,q,d (Rn) is an equivalent

quasi-norm of LA
X ,q,d(R

n).

Now, we give a basic inequality which is used throughout this article.

Lemma 3.8 Let {ai }i∈N ⊂ [0,∞). If α ∈ [1,∞), then

(∑
i∈N

ai

)α

≥
∑
i∈N

aα
i .

The following proposition shows that, if the ball quasi-Banach function space X
is concave and s ∈ (0, 1], then the space LA

X ,q,d,s(R
n) coincides with LA

X ,q,d(R
n)

introduced in Definition 3.6.

Proposition 3.9 Let X be a concave ball quasi-Banach function space, q ∈ [1,∞),
d ∈ Z+, and s ∈ (0, 1]. Then

LA
X ,q,d,s(R

n) = LA
X ,q,d(R

n) (3.5)

with equivalent quasi-norms.

Proof We first show that

LA
X ,q,d(R

n) ⊂ LA
X ,q,d,s(R

n) (3.6)
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and the inclusion is continuous. For this purpose, let f ∈ LA
X ,q,d(R

n). Then, from the
assumption that X is concave, Definitions 2.4(ii) and 2.6(ii), and s ∈ (0, 1], together
with Lemma 3.8, we deduce that

‖ f ‖LA
X ,q,d,s (R

n) � sup

(
m∑
i=1

λi

)−1 m∑
j=1

λ j |B( j)|
‖1B( j)‖X

×
[ 

B( j)

∣∣∣ f (x)− Pd
B( j) f (x)

∣∣∣q dx

] 1
q

≤ sup

(
m∑
i=1

λi

)−1 m∑
j=1

λ j‖ f ‖LA
X ,q,d (Rn) = ‖ f ‖LA

X ,q,d (Rn),

where the supremum is taken over all m ∈ N, {B( j)}mj=1 ⊂ B, and {λ j }mj=1 ⊂ (0,∞).
This further implies (3.6). Combining (3.6) and Remark 3.7(i), we obtain (3.5), which
completes the proof of Proposition 3.9. ��

Next, we establish the relation between LA
X ,q,d,s(R

n) and H A
X (Rn). To this end, we

first recall the definitions of the anisotropic (X , q, d)-atom and the anisotropic finite
atomic Hardy space H A,q,d

X ,fin (Rn) from [84, Definitions 4.1 and 5.1].

Definition 3.10 Let A be a dilation and X a ball quasi-Banach function space satisfying
both Assumption 2.10 with p− ∈ (0,∞) and Assumption 2.12 with the same p−,
θ0 ∈ (0, p), and p0 ∈ (θ0,∞), where p is the same as in (2.7). Assume that N ∈ N∩[
NX , A,∞)

with NX , A the same as in (3.2). Further assume that q ∈ (max{p0, 1},∞]
and

d ∈
[⌊(

1

θ0
− 1

)
ln b

ln(λ−)

⌋
,∞

)
∩ Z+. (3.7)

(i) An anisotropic (X , q, d)-atom a is a measurable function on R
n satisfying that

(i)1 supp a := {x ∈ R
n : a(x) �= 0} ⊂ B, where B ∈ B and B is the same as in (2.4);

(i)2 ‖a‖Lq (Rn) ≤ |B|
1
q ‖1B‖−1X ;

(i)3
´

Rn a(x)xγ dx = 0 for any γ ∈ Z
n+ with |γ | ≤ d, here and thereafter, for any

γ := {γ1, . . . , γn} ∈ Z
n+, |γ | := γ1 + · · · + γn and xγ := xγ1

1 · · · xγn
n .

(ii) The anisotropic finite atomic Hardy space H A,q,d
X ,fin (Rn), associated with both A

and X , is defined to be the set of all the f ∈ S ′(Rn) satisfying that there exists a
K ∈ N, a sequence {λi }Ki=1 ⊂ (0,∞), and a finite sequence {ai }Ki=1 of anisotropic
(X , q, d)-atoms supported, respectively, in {B(i)}Ki=1 ⊂ B such that

f =
K∑
i=1

λi ai .
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Moreover, for any f ∈ H A,q,d
X ,fin (Rn), define

‖ f ‖
H A,q,d
X , fin (Rn)

:= inf

∥∥∥∥∥∥∥

{
K∑
i=1

[
λi1B(i)

‖1B(i)‖X
]θ0

} 1
θ0

∥∥∥∥∥∥∥
X

,

where the infimum is taken over all the decompositions of f as above.

Let A be a dilation and X the same as in Definition 3.10. In the remainder of this
article, we always let

dX , A :=
⌊(

1

θ0
− 1

)
ln b

ln(λ−)

⌋
. (3.8)

To establish the dual theorem of H A
X (Rn), we need its atomic and its finite atomic

characterizations as follows, which are simple corollaries of [84, Theorem 4.3 and
Lemma 7.2] and [84, Theorem 5.4], respectively.

Lemma 3.11 Let A, X, q, d, and θ0 be the same as in Definition 3.10. Further assume
that X has an absolutely continuous quasi-norm, {a j } j∈N is a sequence of anisotropic
(X , q, d)-atoms supported, respectively, in the balls {B( j)} j∈N ⊂ B and {λ j } j∈N ⊂
(0,∞) such that

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈N

[
λ j

‖1B( j)‖X
]θ0

1B( j)

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

< ∞.

Then the series f := ∑
j∈N

λ j a j converges in H A
X (Rn), f ∈ H A

X (Rn), and there
exists a positive constant C, independent of f , such that

‖ f ‖H A
X (Rn) ≤ C

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈N

[
λ j

‖1B( j)‖X
]θ0

1B( j)

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

.

Lemma 3.12 Let A, X, q, d, θ0, and p0 be the same as in Definition 3.10.

(i) If q ∈ (max{p0, 1},∞), then ‖ · ‖
H A,q,d
X , fin (Rn)

and ‖ · ‖H A
X (Rn) are equivalent quasi-

norms on H A,q,d
X ,fin (Rn);

(ii) ‖·‖H A,∞,d
X ,fin (Rn)

and ‖·‖H A
X (Rn) are equivalent quasi-norms on H

A,∞,d
X ,fin (Rn)∩C(Rn),

where C(Rn) denotes the set of all continuous functions on R
n.

The following conclusion is also needed for establishing the dual theorem.

Proposition 3.13 Let A, X, and d be the same as in Definition 3.10. Then the set
H A,∞,d
X ,fin (Rn) ∩ C(Rn) is dense in H A

X (Rn).
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Proof From [84, Lemma 7.2], it easily follows that H A,∞,d
X ,fin (Rn) is dense in H A

X (Rn).

Thus, to show that H A,∞,d
X ,fin (Rn) ∩ C(Rn) is also dense in H A

X (Rn), it suffices to

prove that the set H A,∞,d
X ,fin (Rn)∩ C(Rn) is dense in H A,∞,d

X ,fin (Rn) with the quasi-norm
‖·‖H A

X (Rn). To this end,we only need to show that, for any given anisotropic (X ,∞, d)-
atom a supported in the anisotropic ball B := x0 + Bi0 with x0 ∈ R

n and i0 ∈ Z,

lim
k→−∞‖a − ϕk ∗ a‖H A

X (Rn) = 0, (3.9)

where ϕ ∈ S(Rn) satisfies
´

Rn ϕ(x) dx = 1 and suppϕ ⊂ B0. Let s ∈
(max{1, p0},∞) with p0 the same as in Definition 3.1. Observe that, for any
k ∈ (−∞, 0] ∩ Z,

|Bmax{i0,0}+τ | 1s (a − ϕk ∗ a)

‖1x0+Bmax{i0,0}+τ
‖X‖a − ϕk ∗ a‖Ls (Rn)

is an anisotropic (X , s, d)-atom supported in the anisotropic ball x0 + Bmax{i0,0}+τ ,
which, combined with Lemma 3.11, further implies that

‖a − ϕk ∗ a‖H A
X (Rn) �

‖1x0+Bmax{i0,0}+τ
‖X‖a − ϕk ∗ a‖Ls (Rn)

|Bmax{i0,0}+τ | 1s
� ‖a − ϕk ∗ a‖Ls (Rn).

From this and [4, p.15,Lemma 3.8], we infer (3.9), which then completes the proof
of Proposition 3.13. ��

The following technical lemma is just [4, p. 49, (8.9)] (see also [58, Lemma 3.4]).

Lemma 3.14 Let f ∈ L1
loc(R

n), d ∈ Z+, and B be an anisotropic ball in B. Then
there exists a positive constant C, depending only on d, such that

sup
x∈B

∣∣∣Pd
B f (x)

∣∣∣ ≤ C
 
B
| f (x)| dx .

Now, we prove that the dual space of H A
X (Rn) is LA

X ,q ′,d,θ0
(Rn).

Theorem 3.15 Let A, X, q, d, and θ0 be the same as inDefinition 3.10. Further assume
that X has an absolutely continuous quasi-norm. Then the dual space of H A

X (Rn),
denoted by (H A

X (Rn))∗, is LA
X ,q ′,d,θ0

(Rn) with 1/q+ 1/q ′ = 1 in the following sense:

(i) Let g ∈ LA
X ,q ′,d,θ0

(Rn). Then the linear functional

Lg : f → Lg( f ) :=
ˆ

Rn
f (x)g(x) dx, (3.10)

initially defined for any f ∈ H A,q,d
X ,fin (Rn), has a bounded extension to H A

X (Rn).
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(ii) Conversely, any continuous linear functional on H A
X (Rn) arises as in (3.10) with

a unique g ∈ LA
X ,q ′,d,θ0

(Rn).

Moreover, ‖g‖LA
X ,q′,d,θ0

(Rn) ∼ ‖Lg‖(H A
X (Rn))∗ , where the positive equivalence con-

stants are independent of g.

Proof We first show (i) in the case q ∈ (max{1, p0},∞) with p0 the same as in
Definition 3.10. To this end, let g ∈ LA

X ,q ′,d,θ0
(Rn). For any f ∈ H A,q,d

X ,fin (Rn),
by Definition 3.10, we know that there exists a sequence {λ j }mj=1 ⊂ (0,∞) and a
sequence {a j }mj=1 of anisotropic (X , q, d)-atoms supported, respectively, in the balls

{B( j)}mj=1 ⊂ B such that f =∑m
j=1 λ j a j and

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
j=1

[
λ j

‖1B( j)‖X
]θ0

1B( j)

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

∼ ‖ f ‖
H A,q,d
X , fin (Rn)

.

From these, the vanishing moments of a j , the Hölder inequality, the size condition of
a j , Remark 3.4(ii), Lemma 3.12(i), and Definition 3.3 with both q replaced by q ′ and
s replaced by θ0, it follows that

|Lg( f )| =
∣∣∣∣
ˆ

Rn
f (x)g(x) dx

∣∣∣∣ ≤
m∑
j=1

λ j

∣∣∣∣
ˆ
B( j)

a j (x)g(x) dx

∣∣∣∣

=
m∑
j=1

λ j inf
P∈Pd (Rn)

∣∣∣∣
ˆ
B( j)

a j (x) [g(x)− P(x)] dx

∣∣∣∣

≤
m∑
j=1

λ j‖a j‖Lq (Rn) inf
P∈Pd (Rn)

[ˆ
B( j)

|g(x)− P(x)|q ′ dx
] 1

q′

≤
m∑
j=1

λ j |B( j)|
‖1B( j)‖X inf

P∈Pd (Rn)

[ 
B( j)

|g(x)− P(x)|q ′ dx
] 1

q′

�

∥∥∥∥∥∥

{
m∑
i=1

[
λi

‖1B(i)‖X
]θ0

1B(i)

} 1
θ0

∥∥∥∥∥∥
X

‖g‖LA
X ,q′,d,θ0

(Rn)

∼ ‖ f ‖
H A,q,d
X , fin (Rn)

‖g‖LA
X ,q′,d,θ0

(Rn) ∼ ‖ f ‖H A
X (Rn)‖g‖LA

X ,q′,d,θ0
(Rn). (3.11)

Moreover, by [84, Lemma 7.2] and the assumption that X has an absolutely continuous
quasi-norm, we find that H A,q,d

X ,fin (Rn) is dense in H A
X (Rn). This, together with (3.11)

and a standard density argument, further implies that, when q ∈ (max{1, p0},∞), (i)
holds true and

‖Lg‖(H A
X (Rn))∗ � ‖g‖LA

X ,q′,d,θ0
(Rn)
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with the implicit positive constant independent of g.
We next prove (i) in the case q = ∞. Indeed, using Proposition 3.13 and repeat-

ing the above proof for any given q ∈ (max{1, p0},∞), we then conclude that
any g ∈ LA

X ,1,d,θ0
(Rn) induces a bounded linear functional on H A

X (Rn), which

is initially defined on H A,∞,d
X ,fin (Rn) ∩ C(Rn) and given by setting, for any � ∈

H A,∞,d
X ,fin (Rn) ∩ C(Rn),

Lg : � �→ Lg(�) :=
ˆ

Rn
�(x)g(x) dx, (3.12)

and then has a bounded linear extension to H A
X (Rn). Let g ∈ LA

X ,1,d,θ0
(Rn). Thus, it

remains to show that, for any f ∈ H A,∞,d
X ,fin (Rn),

Lg( f ) =
ˆ

Rn
f (x)g(x) dx . (3.13)

To this end, suppose f ∈ H A,∞,d
X ,fin (Rn) and supp f ⊂ x0 + Bi0 with x0 ∈ R

n

and i0 ∈ Z. Let ϕ ∈ S(Rn) satisfy suppϕ ⊂ B0 and
´

Rn ϕ(x) dx = 1. Letting
s ∈ (max{1, p0},∞), by the proof of Proposition 3.13, we find that, for any k ∈
(−∞, 0] ∩ Z and f ∈ Ls(Rn),

ϕk ∗ f ∈ H A,∞,d
X ,fin (Rn) ∩ C(Rn) (3.14)

and
lim

k→−∞‖ f − ϕk ∗ f ‖Ls (Rn) = 0. (3.15)

From this and the Riesz lemma (see, for instance, [30, Theorem 2.30]), it follows that
there exists a subsequence {kh}h∈N ⊂ (−∞, 0] ∩Z such that limh→∞ kh = −∞ and,
for almost every x ∈ R

n ,

lim
h→∞ϕkh ∗ f (x) = f (x).

By (3.15) and an argument similar to that used in the proof of Proposition 3.13, we
conclude that limh→∞ ‖ f −ϕkh ∗ f ‖H A

X (Rn) = 0, which, combined with Lemma 3.11,
(3.14), (3.12), the fact that

∣∣(ϕkh ∗ f
)
g
∣∣ ≤ ‖ f ‖L∞(Rn)1x0+Bmax{i0,0}+τ

|g| ∈ L1(Rn),

and the Lebesgue dominated convergence theorem (see, for instance, [30, Theorem
2.24]), further implies that

Lg( f ) = lim
h→∞ Lg(ϕkh ∗ f ) = lim

h→∞

ˆ
Rn

ϕkh ∗ f (x)g(x) dx

=
ˆ

Rn
f (x)g(x) dx .
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This finishes the proof of (3.13) and hence (i) in the case q = ∞. Moreover, repeating
the proof in (3.11), we obtain, for any q ∈ (max{1, p0},∞],

‖Lg‖(H A
X (Rn))∗ � ‖g‖LA

X ,q′,d,θ0
(Rn) (3.16)

with the implicit positive constant independent of g.
We next show (ii). For this purpose, let πB : L1(B) → Pd(R

n), with B ∈ B, be
the natural projection such that, for any f ∈ L1(B) and Q ∈ Pd(R

n),

ˆ
B

πB( f )(x)Q(x) dx =
ˆ
B
f (x)Q(x) dx . (3.17)

For any q ∈ (max{1, p0},∞] and any ball B ∈ B, the closed subspace Lq
0(B) of

Lq(B) is defined by setting

Lq
0(B) := {

f ∈ Lq(B) : πB( f ) = 0 and f �= 0 almost everywhere on B
}
,

where Lq(B) is the subspace of Lq(Rn) consisting of all the measurable functions on
R
n vanishing outside B. For any f ∈ Lq

0(B), since f �= 0 almost everywhere on B,
we can easily deduce ‖ f ‖Lq (Rn) �= 0. Therefore,

|B| 1q
‖1B‖X ‖ f ‖

−1
Lq (Rn)

f

is an anisotropic (X , q, d)-atom. From this and Lemma 3.11, it follows that

∥∥∥∥
|B|1/q
‖1B‖X ‖ f ‖

−1
Lq (Rn)

f

∥∥∥∥
H A
X (Rn)

� 1. (3.18)

Now, suppose L ∈ (H A
X (Rn))∗. Then, by (3.18), we find that, for any f ∈ Lq

0(B),

|L( f )| ≤ ‖L‖(H A
X (Rn))∗

‖1B‖X
|B|1/q ‖ f ‖Lq (Rn). (3.19)

Therefore, L provides a bounded linear functional on Lq
0 (B). Thus, applying theHahn–

Banach theorem (see, for instance, [30, Theorem 5.6]), we conclude that there exists
a linear functional LB , which extends L to the whole space Lq(B) without increasing
its norm.

When q ∈ (max{1, p0},∞), by the duality (Lq(B))∗ = Lq ′(B), we find that there
exists an hB ∈ Lq ′(B) ⊂ L1(B) such that, for any f ∈ Lq

0(B),

L( f ) = LB( f ) =
ˆ
B
f (x)hB(x) dx . (3.20)
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In the case q = ∞, let q̃ ∈ (max{1, p0},∞). Then there exists an hB ∈ Lq̃ ′(B) ⊂
L1(B) such that, for any f ∈ L∞0 (B) ⊂ Lq̃(B), L( f ) = ´

B f (x)hB(x) dx . Alto-

gether, we conclude that, for any q ∈ (max{1, p0},∞], there exists an hB ∈ Lq ′(B)

such that, for any f ∈ Lq
0(B),

L( f ) =
ˆ
B
f (x)hB(x) dx . (3.21)

Next, we prove that such an hB ∈ Lq ′(B) is unique in the sense of moduloPd(R
n).

Indeed, assume that h̃ B is another function of Lq ′(B) such that

L( f ) =
ˆ
B
f (x)h̃ B(x) dx (3.22)

for any f ∈ Lq
0(B). Then, from (3.21), (3.22), and (3.17), we infer that, for any

f ∈ L∞(B), f − πB( f ) ∈ L∞0 (B) and

0 =
ˆ
B
[ f (x)− πB( f )(x)]

[
hB(x)− h̃ B(x)

]
dx

=
ˆ
B
f (x)

[
hB(x)− h̃ B(x)

]
dx −

ˆ
B

πB( f )(x)πB(hB − h̃ B)(x) dx

=
ˆ
B
f (x)

[
hB(x)− h̃ B(x)

]
dx −

ˆ
B
f (x)πB(hB − h̃ B)(x) dx

=
ˆ
B
f (x)

[
hB(x)− h̃ B(x)− πB(hB − h̃ B)(x)

]
dx .

The arbitrariness of f further implies that hB(x) − h̃ B(x) = πB(hB − h̃ B)(x) for
almost every x ∈ B. Therefore, after changing the value of hB (or h̃ B) on a set of
measure zero, we have hB − h̃ B ∈ Pd(R

n). Thus, for any q ∈ (max{1, p0},∞] and
f ∈ Lq

0(B), there exists a unique hB ∈ Lq ′(B)/Pd(B) such that (3.20) holds true.
For any j ∈ R

n and f ∈ Lq
0(Bj ), let g j be the unique element of Lq ′(Bj )/Pd(Bj )

such that

L( f ) =
ˆ
Bj

f (x)g j (x) dx .

Therefore,we can define a local Lq ′(Rn) function g by setting g(x) := g j (x)whenever
x ∈ Bj . We point out that, for any j ∈ N, to obtain the desired g j , as mentioned above,
we may need to change the value of g j on a set of measure zero. Since we are only
dealing with countable balls {Bj } j∈N, this does not cause any trouble.

Assume that f is a finite linear combination of anisotropic (X , q, d)-atoms. It is
easy to show that there exists an x0 ∈ R

n and a k0 ∈ Z such that supp f ⊂ x0 + Bk0 .
Let

j0 := ln A0 + ln[bk0−1 + ρ(x0)]
ln b

+ 1.
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Then, by Definition 2.3, we conclude that supp f ⊂ x0 + Bk0 ⊂ Bj0 . Thus, f ∈
Lq
0(Bj0) and

L( f ) =
ˆ
Bj0

f (x)g j0(x) dx =
ˆ

Rn
f (x)g(x) dx .

From this and (3.19), we deduce that, for any ball B ∈ B,

‖g‖(Lq
0 (B))∗ ≤

‖1B‖X
|B|1/q ‖L‖(H A

X (Rn))∗ . (3.23)

Moreover, it is known that

‖g‖(Lq
0 (B))∗ = inf

P∈Pd (Rn)
‖g − P‖Lq′ (B)

(see, for instance, [4, p. 52, (8.12)]), which, combined with Remark 3.7(ii) and (3.23),
further implies that

‖g‖LA
X ,q′,d (Rn) ∼ sup

B∈B
|B| 1q
‖1B‖X ‖g‖(Lq

0 (B))∗ ≤ ‖L‖(H A
X (Rn))∗ . (3.24)

Thus, g ∈ LA
X ,q ′,d(R

n) and, for any finite linear combination f of anisotropic
(X , q, d)-atoms,

L( f ) =
ˆ

Rn
f (x)g(x) dx .

Now,we show that g ∈ LA
X ,q ′,d,θ0

(Rn) and‖g‖LA
X ,q′,d,θ0

(Rn) � ‖L‖(H A
X (Rn))∗ .To this

end, for any m ∈ N, j ∈ {1, . . . ,m}, B( j) ∈ B, and λ j ∈ (0,∞), let h j ∈ Lq(B( j))

with ‖h j‖Lq (B( j)) = 1 be such that

[ˆ
B( j)

∣∣∣g(x)− Pd
B( j)g(x)

∣∣∣q
′
dx

] 1
q′ =

ˆ
B( j)

[
g(x)− Pd

B( j)g(x)
]
h j (x) dx (3.25)

and, for any x ∈ R
n , define

a j (x) :=
|B( j)| 1q [h j (x)− Pd

B( j)h j (x)]1B( j) (x)

‖1B( j)‖X‖h j − Pd
B( j)h j‖Lq (B( j))

.
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Then it is easy to find that, for any j ∈ {1, . . . ,m}, a j is an anisotropic (X , q, d)-atom.
From this and Lemma 3.11, it follows that

∑m
j=1 λ j a j ∈ H A

X (Rn) and

∥∥∥∥∥∥
m∑
j=1

λ j a j

∥∥∥∥∥∥
H A
X (Rn)

�

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
j=1

[
λ j

‖1B( j)‖X
]θ0

1B( j)

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

. (3.26)

Moreover, by the Minkowski inequality, the assumption that ‖h j‖Lq (B( j)) = 1,
Lemma 3.14, and the Hölder inequality, we find that, for any j ∈ {1, . . . ,m},

∥∥∥h j − Pd
B( j)h j

∥∥∥
Lq (B( j))

≤ ∥∥h j
∥∥
Lq (B( j))

+
∥∥∥Pd

B( j)h j

∥∥∥
Lq (B( j))

� 1+
∣∣∣B( j)

∣∣∣
1
q
 
B( j)

∣∣h j (x)
∣∣ dx

= 1+ 1

|B( j)| 1q′
ˆ
B( j)

∣∣h j (x)
∣∣ dx

≤ 1+ ∥∥h j
∥∥
Lq (B( j))

� 1.

This, together with (3.25), the assumption that L ∈ (H A
X (Rn))∗, and (3.26), further

implies that

m∑
j=1

λ j |B( j)|
‖1B( j)‖X

[ 
B( j)

∣∣∣g(x)− Pd
B( j)g(x)

∣∣∣q
′
dx

] 1
q′

=
m∑
j=1

λ j |B( j)| 1q
‖1B( j)‖X

ˆ
B( j)

[
g(x)− Pd

B( j)g(x)
]
h j (x) dx

=
m∑
j=1

λ j |B( j)| 1q
‖1B( j)‖X

ˆ
B( j)

[
h j (x)− Pd

B( j)h j (x)
]
g(x)1B( j) (x) dx

�
m∑
j=1

λ j

ˆ
B( j)

a j (x)g(x) dx =
m∑
j=1

λ j L(a j ) = L

⎛
⎝

m∑
j=1

λ j a j

⎞
⎠

�

∥∥∥∥∥∥
m∑
j=1

λ j a j

∥∥∥∥∥∥
H A
X (Rn)

�

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
j=1

[
λ j

‖1B( j)‖X
]θ0

1B( j)

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

.

Using this and Definition 3.3, we obtain g ∈ LA
X ,q ′,d,θ0

(Rn). Moreover, from g ∈
LA
X ,q ′,d,θ0

(Rn), Proposition 3.9, and (3.24), we infer that

‖g‖LA
X ,q′,d,θ0

(Rn) ∼ ‖g‖LA
X ,q′,d (Rn) � ‖L‖(H A

X (Rn))∗ .
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This finishes the proof of (ii) and hence Theorem 3.15. ��

As a consequence of Theorem 3.15, we have the following equivalence of the
anisotropic ball Campanato-type function space LA

X ,q,d,s(R
n); we omit the details.

Corollary 3.16 Let A, X, d, θ0, and p0 be the same as in Theorem 3.15 and q ∈ [1,∞)

when p0 ∈ (0, 1), or q ∈ [1, p′0) when p0 ∈ [1,∞). Then

LA
X ,1,dX ,A,θ0

(Rn) = LA
X ,q,d,θ0

(Rn)

with equivalent quasi-norms, where dX ,A is the same as in (3.8).

Remark 3.17 (i) If A := 2 In×n , then Theorem 3.15 and Corollary 3.16 were obtained
in [89, Theorem 3.14 and Corollary 3.15], respectively.

(ii) Recently, Yan et al. [85, Theorem 6.6] obtained the dual theorem of the Hardy
space HY (X ) associated with the ball quasi-Banach function space Y (X ) on a
given spaceX of homogeneous type.We point out that, since there exists no linear
structure in a general space X of homogeneous type, one can not introduce the
Schwartz function and the polynomial on X . Indeed, any atom in [85] only has
zero degree vanishing moment, while the atom in Theorem 3.15 has vanishing
moments up to order d ∈ [dX , A,∞) ∩ N with dX , A the same as in (3.8). Thus,
although (Rn, ρ, dx) is a space of homogeneous type, Theorem 3.15 can not be
deduced from [85, Theorem 6.6] and, actually, they can not cover each other.

4 Equivalent characterizations ofLA
X,q,d,�0

(Rn)

In this section, applying the dual theorem obtained in Sect. 3, we establish several
equivalent characterizations for the anisotropic ball Campanato-type function space
LA
X ,q,d,θ0

(Rn). This plays an important role in establishing the Carleson measure

characterization of LA
X ,1,d,θ0

(Rn) in Sect. 6 below.

Theorem 4.1 Let A, X, q, d, and θ0 be the same as in Corollary 3.16 and

ε ∈
(

ln b

ln(λ−)

[
2

s
+ d

ln(λ+)

ln b

]
,∞

)
(4.1)

for some s ∈ (0, θ0). Then the following statements are mutually equivalent:

(i) f ∈ LA
X ,q,d,θ0

(Rn);

(ii) f ∈ Lq
loc(R

n) and
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‖ f ‖LA,ε
X ,1,d,θ0

(Rn)
:= sup

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

×
m∑
j=1

λ j |x j + Bl j |
‖1x j+Bl j

‖X

×
ˆ

Rn

bεl j
ln(λ−)

ln b | f (x)− Pd
x j+Bl j

f (x)|
bl j [1+ε

ln(λ−)

ln b ] + [ρ(x − x j )]1+ε
ln(λ−)

ln b

dx

<∞, (4.2)

where the supremum is taken over all m ∈ N, {x j + Bl j }mj=1 ⊂ B, with both
{x j }mj=1 ⊂ R

n and {l j }mj=1 ⊂ Z, and {λ j }mj=1 ⊂ (0,∞).

Moreover, for any f ∈ Lq
loc(R

n),

‖ f ‖LA
X ,q,d,θ0

(Rn) ∼ ‖ f ‖LA,ε
X ,1,d,θ0

(Rn)

with the positive equivalence constants independent of f .

To show Theorem 4.1, we need the following technical lemma, which is a slightly
elaborate variant of [82, Lemma 2.13] and which is indeed a simple corollary of the
well-known pointwise estimate that 1x j+Bk j+�

≤ b�M(1x j+Bk j
) for any � ∈ Z+, any

sequence {x j } j∈N ⊂ R
n , and any sequence {k j } j∈N ⊂ Z; we omit the details here.

Lemma 4.2 Let X be a ball quasi-Banach function space satisfying Assumption 2.10
with p− ∈ (0,∞), � ∈ Z+, and s ∈ (0,min{p−, 1}). Then there exists a positive
constant C, independent of both � and s, such that, for any sequence {x j } j∈N ⊂ R

n

and any sequence {k j } j∈N ⊂ Z,

∥∥∥∥∥∥
∑
j∈N

1x j+Bk j+�

∥∥∥∥∥∥
X

≤ Cb
�
s

∥∥∥∥∥∥
∑
j∈N

1x j+Bk j

∥∥∥∥∥∥
X

,

where, for any j ∈ N, Bk j is the same as in (2.3).

Now, we show Theorem 4.1.

Proof of Theorem 4.1 According to Corollary 3.16, to prove the present theorem, we
only need to show that, for any f ∈ Lq

loc(R
n),

‖ f ‖LA
X ,1,d,θ0

(Rn) ∼ ‖ f ‖LA,ε
X ,1,d,θ0

(Rn)
. (4.3)

We first prove

‖ f ‖LA
X ,1,d,θ0

(Rn) � ‖ f ‖LA,ε
X ,1,d,θ0

(Rn)
. (4.4)
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Indeed, by Definition 2.3, we find that, for any m ∈ N, {x j + Bl j }mj=1 ⊂ B with both
{x j }mj=1 ⊂ R

n and {l j }mj=1 ⊂ Z, {λ j }mj=1 ⊂ (0,∞), ε ∈ (0,∞), and j ∈ {1, . . . ,m},

ˆ
Rn

bεl j
ln(λ−)

ln b | f (x)− Pd
x j+Bl j

f (x)|
bl j [1+ε

ln(λ−)

ln b ] + [ρ(x − x j )]1+ε
ln(λ−)

ln b

dx

≥
ˆ
x j+Bl j

bεl j
ln(λ−)

ln b | f (x)− Pd
x j+Bl j

f (x)|
bl j [1+ε

ln(λ−)

ln b ] + [ρ(x − x j )]1+ε
ln(λ−)

ln b

dx

∼
ˆ
x j+Bl j

bεl j
ln(λ−)

ln b | f (x)− Pd
x j+Bl j

f (x)|
bl j [1+ε

ln(λ−)

ln b ]
dx

=
 
x j+Bl j

∣∣∣ f (x)− Pd
x j+Bl j

f (x)
∣∣∣ dx,

which, together with Definition 3.3 and (4.2), further implies (4.4).
Conversely, from Definitions 2.3 and 3.3, we deduce that, for any m ∈ N, {x j +

Bl j }mj=1 ⊂ B with both {x j }mj=1 ⊂ R
n and {l j }mj=1 ⊂ Z, {λ j }mj=1 ⊂ (0,∞),

m∑
j=1

λ j |x j + Bl j |
‖1x j+Bl j

‖X
ˆ

Rn

bεl j
ln(λ−)

ln b | f (x)− Pd
x j+Bl j

f (x)|
bl j [1+ε

ln(λ−)

ln b ] + [ρ(x − x j )]1+ε
ln(λ−)

ln b

dx

=
m∑
j=1

λ j |x j + Bl j |
‖1x j+Bl j

‖X

[ˆ
x j+Bl j

+
∞∑
k=0

ˆ
x j+Bl j+k+1\x j+Bl j+k

]

×
bεl j

ln(λ−)

ln b | f (x)− Pd
x j+Bl j

f (x)|
bl j [1+ε

ln(λ−)

ln b ] + [ρ(x − x j )]1+ε
ln(λ−)

ln b

dx

≤
m∑
j=1

λ j

‖1x j+Bl j
‖X

ˆ
x j+Bl j

∣∣∣ f (x)− Pd
x j+Bl j

f (x)
∣∣∣ dx

+
m∑
j=1

λ j

‖1x j+Bl j
‖X

∞∑
k=0

b−k[1+ε
ln(λ−)

ln b ]

×
ˆ
x j+Bl j+k+1

∣∣∣ f (x)− Pd
x j+Bl j

f (x)
∣∣∣ dx

≤

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

‖ f ‖LA
X ,1,d,θ0

(Rn) + I, (4.5)



   50 Page 28 of 71 C. Li et al.

where

I :=
m∑
j=1

λ j

‖1x j+Bl j
‖X

∞∑
k=0

b−k[1+ε
ln(λ−)

ln b ]
ˆ
x j+Bl j+k+1

∣∣∣ f (x)− Pd
x j+Bl j

f (x)
∣∣∣ dx .

Obviously, we have

I �
m∑
j=1

λ j

‖1x j+Bl j
‖X

∑
k∈N

b−k[1+ε
ln(λ−)

ln b ]
ˆ
x j+Bl j+k

∣∣∣ f (x)− Pd
x j+Bl j+k

f (x)
∣∣∣ dx

+
m∑
j=1

λ j

‖1x j+Bl j
‖X

∑
k∈N

b−k[1+ε
ln(λ−)

ln b ]

×
ˆ
x j+Bl j+k

∣∣∣Pd
x j+Bl j+k

f (x)− Pd
x j+Bl j

f (x)
∣∣∣ dx . (4.6)

Note that, on the one hand, by the definition of minimizing polynomials, (2.6), [45,
Lemma 2.19], and Lemma 3.14, we find that, for any k ∈ N and x ∈ x j + Bl j+k+1,

∣∣∣Pd
x j+Bl j+k

f (x)− Pd
x j+Bl j

f (x)
∣∣∣

≤
k∑

ν=1

∣∣∣Pd
x j+Bl j+ν

f (x)− Pd
x j+Bl j+ν−1 f (x)

∣∣∣

=
k∑

ν=1

∣∣∣Pd
x j+Bl j+ν−1

(
f − Pd

x j+Bl j+ν
f
)

(x)
∣∣∣

≤
k∑

ν=1

∥∥∥Pd
x j+Bl j+ν−1

(
f − Pd

x j+Bl j+ν
f
)∥∥∥

L∞(B(x j ,λ
l j+k
+ ))

�
k∑

ν=1

(
λ
l j+k
+

λ
l j+v−1
−

)d ∥∥∥Pd
x j+Bl j+ν−1

(
f − Pd

x j+Bl j+ν
f
)∥∥∥

L∞(B(x j ,λ
l j+ν−1
− ))

� λkd+
k∑

ν=1

1

|x j + Bl j+ν−1|
ˆ
x j+Bl j+ν

∣∣∣ f (y)− Pd
x j+Bl j+ν

f (y)
∣∣∣ dy; (4.7)

on the other hand, from Definition 2.4(ii), the fact that s ∈ (0, θ0), and Lemma 4.2,
we infer that, for any j ∈ {1, . . . ,m},

1

‖1x j+Bl j
‖X � b

k
s

1

‖1x j+Bl j+k‖X
(4.8)
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and, for any k ∈ N,

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli+k‖X

)θ0

1xi+Bli+k

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

≤

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli+k

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

� b
k
s

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

. (4.9)

Combining (4.6), (4.7), (4.8), (4.9), Lemma 4.2, λε− = bε
ln(λ−)

ln b , and λd+ = bd
ln(λ+)

ln b ,
we conclude that

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

× I

�
∑
k∈N

b−k[1−
2
s+ε

ln(λ−)

ln b ]

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli+k‖X

)θ0

1xi+Bli+k

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

×
m∑
j=1

λ j

‖1x j+Bl j+k‖X
ˆ
x j+Bl j+k

∣∣∣ f (x)− Pd
x j+Bl j+k

f (x)
∣∣∣ dx

+
∑
k∈N

(
λd+
λε−

b

)k k∑
ν=1

bν( 2s−1)

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli+ν
‖X

)θ0

1xi+Bli+ν

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

×
m∑
j=1

λ j

‖1x j+Bl j+ν
‖X

ˆ
x j+Bl j+ν

∣∣∣ f (y)− Pd
x j+Bl j+ν

f (y)
∣∣∣ dy

� ‖ f ‖LA
X ,1,d,θ0

(Rn)

⎧⎨
⎩
∑
k∈N

b−k[1−
2
s+ε

ln(λ−)

ln b ] +
∑
k∈N

(
λd+
λε−

b

)k k∑
ν=1

bν( 2s−1)
⎫⎬
⎭

� ‖ f ‖LA
X ,1,d,θ0

(Rn)

⎧⎨
⎩
∑
k∈N

b−k[1−
2
s+ε

ln(λ−)

ln b ] +
∑
k∈N

(
λd+
λε−

b

)k

b( 2s−1)k
⎫⎬
⎭

� ‖ f ‖LA
X ,1,d,θ0

(Rn)

{∑
k∈N

b−k[1−
2
s+ε

ln(λ−)

ln b ] +
∑
k∈N

b−k[
2
s+ε

ln(λ−)

ln b −d ln(λ+)

ln b ]
}
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∼ ‖ f ‖LA
X ,1,d,θ0

(Rn)

∑
k∈N

b−k[
2
s+ε

ln(λ−)

ln b −d ln(λ+)

ln b ],

which, together with (4.5), (4.2), (4.1), and the arbitrariness ofm ∈ N, {x j+Bl j }mj=1 ⊂
B with both {x j }mj=1 ⊂ R

n and {l j }mj=1 ⊂ Z, and {λ j }mj=1 ⊂ (0,∞), further implies
that

‖ f ‖LA,ε
X ,1,d,θ0

(Rn)
� ‖ f ‖LA

X ,1,d,θ0
(Rn)

∑
k∈N

b−k[
2
s+ε

ln(λ−)

ln b −d ln(λ+)

ln b ]

∼ ‖ f ‖LA
X ,1,d,θ0

(Rn).

This, combined with (4.4), proves (4.3) and hence finishes the proof of Theorem 4.1.
��

We can obtain one more equivalent characterization of LA
X ,q,d,θ0

(Rn) as follows,
whose proof is a slight modification of Theorem 4.1; we omit the details.

Theorem 4.3 If A, X, q, d, θ0, and ε are the sameas inTheorem4.1, then the conclusion
of Theorem 4.1 with m replaced by∞ still holds true, where the supremum therein is
taken over all {x j + Bl j } j∈N ⊂ B with both {x j } j∈N ⊂ R

n and {l j } j∈N ⊂ Z and over
all {λ j } j∈N ⊂ (0,∞) satisfying

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈N

(
λ j

‖1x j+Bl j
‖X

)θ0

1x j+Bl j

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

∈ (0,∞).

Remark 4.4 If A := 2 In×n , thenTheorems 4.1 and 4.3were obtained in [89, Theorems
4.1 and 4.4], respectively.

5 Littlewood–Paley function characterizations of HA
X (R

n)

In this section,we establish the characterizations of H A
X (Rn) in terms of the anisotropic

Lusin area function, the anisotropic Littlewood–Paley g-function, or the anisotropic
Littlewood–Paley g∗λ-function. These are the consequence of the atomic and the finite
atomic characterizations of H A

X (Rn) obtained in [84] and play important roles in estab-
lishing the Carleson measure characterization of LA

X ,1,d,θ0
(Rn) in Sect. 6. First, we

recall the concepts of both the anisotropic radial maximal function and the anisotropic
radial grand maximal function, which were introduced in [4].

Definition 5.1 Let ϕ ∈ S(Rn) and f ∈ S ′(Rn). The anisotropic radial maximal
function M0

ϕ( f ) of f with respect to ϕ is defined by setting, for any x ∈ R
n ,

M0
ϕ( f )(x) := sup

k∈Z

| f ∗ ϕk(x)|.
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Moreover, for any given N ∈ N, theanisotropic radial grandmaximal function M0
N ( f )

of f ∈ S ′(Rn) is defined by setting, for any x ∈ R
n ,

M0
N ( f )(x) := sup

ϕ∈SN (Rn)

M0
ϕ( f )(x).

In what follows, for any ϕ ∈ S(Rn), ϕ̂ is defined by setting, for any ξ ∈ R
n ,

ϕ̂(ξ) :=
ˆ

Rn
ϕ(x)e−2π ı x ·ξ dx,

where ı := √−1 and x · ξ := ∑n
i=1 xiξi for any x := (x1, . . . , xn), ξ :=

(ξ1, . . . , ξn) ∈ R
n . For any f ∈ S ′(Rn), f̂ is defined by setting, for any ϕ ∈ S(Rn),

〈 f̂ , ϕ〉 := 〈 f , ϕ̂〉.
Recall that f ∈ S ′(Rn) is said to vanish weakly at infinity if, for any φ ∈ S(Rn),

f ∗ φk → 0 in S ′(Rn) as k →∞ (see, for instance, [31, p. 50]). Let C∞c (Rn) denote
the collection of all the infinitely differentiable functions with compact support onR

n .
The following Calderón reproducing formula is just [7, Proposition 2.14].

Lemma 5.2 Let d ∈ Z+ and A be a dilation. Assume that φ ∈ C∞c (Rn) satisfies

suppφ ⊂ B0,

ˆ
Rn

xγ φ(x) dx = 0 for any γ ∈ Z
n+ with |γ | ≤ d, (5.1)

and there exists a positive constant C such that

∣∣φ̂(ξ)
∣∣ ≥ C when ξ ∈

{
x ∈ R

n : (2‖A‖)−1 ≤ ρ(x) ≤ 1
}

, (5.2)

where ‖A‖ is the same as in (2.2). Then there exists a ψ ∈ S (Rn) such that

(i) supp ψ̂ is compact and away from the origin;
(ii) for any ξ ∈ R

n\{0},
∑
j∈Z

ψ̂
((

A∗
) j

ξ
)

φ̂
((

A∗
) j

ξ
)
= 1,

where A∗ denotes the adjoint matrix of A.

Moreover, for any f ∈ S ′ (Rn), if f vanishes weakly at infinity, then

f =
∑
j∈Z

f ∗ ψ j ∗ φ j in S ′ (Rn) .

The following definitions of the anisotropic Lusin area function, the anisotropic
Littlewood–Paley g-function, and the anisotropic Littlewood–Paley g∗λ-function were
introduced in [64, Definition 2.6].
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Definition 5.3 Let φ ∈ S(Rn) be the same as in Lemma 5.2. For any f ∈ S ′(Rn), the
anisotropic Lusin area function S( f ), the anisotropic Littlewood–Paley g-function
g( f ), and the anisotropic Littlewood–Paley g∗λ-function g∗λ( f ) with any given λ ∈
(0,∞) are defined, respectively, by setting, for any x ∈ R

n ,

S( f )(x) :=
[∑
k∈Z

b−k
ˆ
x+Bk

| f ∗ φk(y)|2 dy

] 1
2

,

g( f )(x) :=
[∑
k∈Z

| f ∗ φk(x)|2
] 1

2

, (5.3)

and

g∗λ( f )(x) :=
{∑
k∈Z

b−k
ˆ

Rn

[
bk

bk + ρ(x − y)

]λ

| f ∗ φk(y)|2 dy

} 1
2

.

We characterize the space H A
X (Rn), respectively, in terms of the anisotropic

Lusin area function, the anisotropic Littlewood–Paley g-function, and the anisotropic
Littlewood–Paley g∗λ-function as follows.

Theorem 5.4 Let A be a dilation and X a ball quasi-Banach function space satisfying
both Assumption 2.10 with p− ∈ (0,∞) and Assumption 2.12 with the same p−,
θ0 ∈ (0, p), and p0 ∈ (θ0,∞), where p is the same as in (2.7). Then f ∈ H A

X (Rn) if
and only if f ∈ S ′(Rn), f vanishes weakly at infinity, and ‖S( f )‖X < ∞. Moreover,
for any f ∈ H A

X (Rn),

‖S( f )‖X ∼ ‖ f ‖H A
X (Rn),

where the positive equivalence constants are independent of f .

Theorem 5.5 Let A and X be the same as in Theorem 5.4. Then f ∈ H A
X (Rn) if and

only if f ∈ S ′(Rn), f vanishes weakly at infinity, and ‖g( f )‖X < ∞. Moreover, for
any f ∈ H A

X (Rn),

‖g( f )‖X ∼ ‖ f ‖H A
X (Rn),

where the positive equivalence constants are independent of f .

Moreover, by Theorems 5.4 and 5.5 and an argument similar to that used in the
proof of [16, Theorem 4.11], we easily obtain the following result; we omit the details.

Theorem 5.6 Let A, X, and θ0 be the same as in Theorem 5.4 and let λ ∈
(max{1, 2/r+},∞), where

r+ := sup {θ0 ∈ (0,∞) : X satisfies Assumption 2.12 for this θ0

and some p0 ∈ (θ0,∞)} . (5.4)
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Then f ∈ H A
X (Rn) if and only if f ∈ S ′(Rn), f vanishes weakly at infinity, and

‖g∗λ( f )‖X < ∞. Moreover, for any f ∈ H A
X (Rn),

‖g∗λ( f )‖X ∼ ‖ f ‖H A
X (Rn),

where the positive equivalence constants are independent of f ,

To prove Theorem 5.4, we first present the following conclusion which shows that
the quasi-norm ‖ · ‖X of the anisotropic Lusin area functions defined by different φ as
in Lemma 5.2 are equivalent.

Theorem 5.7 Let A and X be the same as in Theorem 5.4 and φ,ψ ∈ C∞c (Rn) satisfy
both (5.1) and (5.2). Then, for any f ∈ S ′(Rn) vanishing weakly at infinity,

‖Sφ( f )‖X ∼ ‖Sψ( f )‖X ,

where Sφ( f ) is the same as in (5.3), Sψ( f ) is the same as in (5.3) with φ replaced by
ψ , and the positive equivalence constants are independent of f .

To prove Theorem 5.7, we need the following lemma which is just [7, Lemma 2.3]
and originates from [18, Theorem 11].

Lemma 5.8 Let A be a dilation. Then there exists a collection

Q :=
{
Qk

α ⊂ R
n : k ∈ Z, α ∈ Ik

}

of open subsets, where Ik is a certain index set, such that

(i) |Rn\⋃α Qk
α| = 0 for each fixed k and Qk

α ∩ Qk
β = ∅ for any α �= β;

(ii) for any α, β, k, � with � ≥ k, either Qk
α ∩ Q�

β = ∅ or Q�
α ⊂ Qk

β ;

(iii) for each (�, β) and each k < �, there exists a unique α such that Q�
β ⊂ Qk

α;
(iv) there exist a certain negative integer v and a certain positive integer u such that,

for any Qk
α with both k ∈ Z and α ∈ Ik , there exists an xQk

α
∈ Qk

α satisfying

that, for any x ∈ Qk
α ,

xQk
α
+ Bvk−u ⊂ Qk

α ⊂ x + Bvk+u .

In what follows, for convenience, we callQ := {Qk
α}k∈Z,α∈Ik in Lemma 5.8 dyadic

cubes and k the level, denoted by �(Qk
α), of the dyadic cube Qk

α with both k ∈ Z and
α ∈ Ik .

The following technical lemma is also necessary, which is just [39, Lemma 6.9].
In what follows, for any α ∈ R, �α� denotes the smallest integer not less than α.

Lemma 5.9 Let d be the same as in (3.7), v and u the same as in Lemma 5.8(iv), and

η ∈
(

ln b

ln b + (d + 1) ln λ−
, 1

]
.
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Then there exists a positive constant C such that, for any k, i ∈ Z, any
{
cQ
}
Q∈Q ⊂

[0,∞) with Q in Lemma 5.8, and any x ∈ R
n,

∑

�(Q)=
⌈
k−u
v

⌉
|Q| b(k∨i)(d+1) ln λ−

ln b

[b(k∨i) + ρ(x − zQ)](d+1) ln λ−
ln b +1

cQ

≤ Cb−[k−(k∨i)]( 1
η
−1)

⎧⎪⎪⎨
⎪⎪⎩
M

⎡
⎢⎢⎣

∑

�(Q)=
⌈
k−u
v

⌉
(
cQ
)η 1Q

⎤
⎥⎥⎦ (x)

⎫⎪⎪⎬
⎪⎪⎭

1
η

,

where �(Q) denotes the level of Q, zQ ∈ Q, and, for any k, i ∈ Z, k ∨ i :=max{k, i}.
We now prove Theorem 5.7.

Proof of Theorem 5.7 By symmetry, to show the present theorem, we only need to
prove that, for any f ∈ S ′(Rn) which vanishes weakly at infinity,

∥∥Sφ( f )
∥∥
X �

∥∥Sψ( f )
∥∥
X . (5.5)

To this end, for any i ∈ Z, x ∈ R
n , and y ∈ x + Bi , let

J (i)
φ ( f )(y) := f ∗ φi (y).

Then, by Lemma 5.2 and the Lebesgue dominated convergence theorem, we find that,
for any i ∈ Z, x ∈ R

n , and y ∈ x + Bi ,

J (i)
φ ( f )(y) =

∑
k∈Z

f ∗ ψk ∗ φk ∗ φi (y)

=
∑
k∈Z

ˆ
Rn

f ∗ ψk(z)φk ∗ φi (y − z) dz

=
∑
k∈Z

∑

�(Q)=
⌈
k−u
v

⌉

ˆ
Q

f ∗ ψk(z)φk ∗ φi (y − z) dz (5.6)

in S ′ (Rn), where all the symbols are the same as in Lemma 5.9. On the other hand,
by [8, Lemma 5.4], we conclude that, for any k, i ∈ Z and x ∈ R

n ,

|φk ∗ φi (x)| � b−(d+1)|k−i | ln λ−
ln b

b(k∨i)(d+1) ln λ−
ln b

[
b(k∨i) + ρ(x)

](d+1) ln λ−
ln b +1

.

This further implies that, for any Q ∈ Q with

�(Q) =
⌈
k − u

v

⌉
, (5.7)
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there exists some zQ ∈ Q such that, for any k, i ∈ Z, x ∈ R
n, y ∈ x + Bi , and z ∈ Q,

|φk ∗ φi (y − z)| � b−(d+1)|k−i | ln λ−
ln b

b(k∨i)(d+1) ln λ−
ln b

[
b(k∨i) + ρ

(
x − zQ

)](d+1) ln λ−
ln b +1

. (5.8)

Moreover, for any Q ∈ Q satisfying (5.7), we have Bv�(Q)+u ⊂ Bk . From this, the
Hölder inequality, and Lemma 5.8(iv), we deduce that, for any z ∈ Q,

1

|Q|
∣∣∣∣
ˆ
Q

f ∗ ψk(y) dy

∣∣∣∣ ≤
[ 

Q
| f ∗ ψk(y)|2 dy

] 1
2

≤
[

1

|Bv�(Q)−u |
ˆ
z+Bv�(Q)+u

| f ∗ ψk(y)|2 dy

] 1
2

�
[
b−k

ˆ
z+Bk

| f ∗ ψk(y)|2 dy

] 1
2 ∼ Y (k)

ψ ( f )(z),

where, for any k ∈ Z and z ∈ R
n ,

Y (k)
ψ ( f )(z) :=

[
b−k

ˆ
z+Bk

| f ∗ ψk(y)|2 dy

] 1
2

.

Thus, for any k ∈ Z and Q ∈ Q satisfying (5.7),

1

|Q|
∣∣∣∣
ˆ
Q

f ∗ ψk(y) dy

∣∣∣∣ � inf
z∈Q Y (k)

ψ ( f )(z).

By this, (5.6), (5.8), and Lemma 5.9, we conclude that, for any given η ∈
( ln b
ln b+(d+1) ln λ− , 1] and for any i ∈ Z, x ∈ R

n , and y ∈ x + Bi ,

∣∣∣J (i)
φ ( f )(y)

∣∣∣ �
∑
k∈Z

b−(d+1)|k−i | ln λ−
ln b

∑

�(Q)=
⌈
k−u
v

⌉
|Q|

× b(k∨i)(d+1) ln λ−
ln b

[b(k∨i) + ρ
(
x − zQ

)](d+1) ln λ−
ln b +1

inf
z∈Q Y (k)

ψ ( f )(z)

�
∑
k∈Z

b−(d+1)|k−i | ln λ−
ln b b−[k−(k∨i)]( 1

η
−1)

×

⎧⎪⎪⎨
⎪⎪⎩
M

⎛
⎜⎜⎝

∑

�(Q)=
⌈
k−u
v

⌉
inf
z∈Q

[
Y (k)

ψ ( f )(z)
]η

1Q

⎞
⎟⎟⎠ (x)

⎫⎪⎪⎬
⎪⎪⎭

1
η

=: J(η,i)(x). (5.9)
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Using (3.7), we are able to choose an η ∈ ( ln b
ln b+(d+1) ln λ− , θ0). Therefore, from (5.9),

it follows that, for such an η and any x ∈ R
n ,

[
Sφ( f )(x)

]2 =
∑
i∈Z

b−i
ˆ
x+Bi

∣∣∣J (i)
φ ( f )(y)

∣∣∣2 dy �
∑
i∈Z

[
J(η,i)(x)

]2
.

This, together with the Hölder inequality and the choice that η > ln b
ln b+(d+1) ln λ− ,

further implies that, for such an η and any x ∈ R
n ,

[
Sφ( f )(x)

]2 �
∑
i∈Z

∑
k∈Z

{
b−(d+1)|k−i | ln λ−

ln b b−[k−(k∨i)]( 1
η
−1)}2

×
∑
k∈Z

⎧⎪⎪⎨
⎪⎪⎩
M

⎛
⎜⎜⎝

∑

�(Q)=
⌈
k−u
v

⌉
inf
z∈Q

[
Y (k)

ψ ( f )(z)
]η

1Q

⎞
⎟⎟⎠ (x)

⎫⎪⎪⎬
⎪⎪⎭

2
η

�
∑
k∈Z

⎧⎪⎪⎨
⎪⎪⎩
M

⎛
⎜⎜⎝

∑

�(Q)=
⌈
k−u
v

⌉
inf
z∈Q

[
Y (k)

ψ ( f )(z)
]η

1Q

⎞
⎟⎟⎠ (x)

⎫⎪⎪⎬
⎪⎪⎭

2
η

≤
∑
k∈Z

{
M

([
Y (k)

ψ ( f )
]η)

(x)
} 2

η
.

Thus, by the choice that η < θ0 and Assumption 2.10, we find that

∥∥Sφ( f )
∥∥
X �

∥∥∥∥∥∥∥

(∑
k∈Z

{
M

([
Y (k)

ψ ( f )
]η)

(x)
} 2

η

) η
2
∥∥∥∥∥∥∥

1
η

X
1
η

�

∥∥∥∥∥∥

(∑
k∈Z

[
Y (k)

ψ ( f )
]2) 1

2

∥∥∥∥∥∥
X

= ∥∥Sψ( f )
∥∥
X ,

which further implies that (5.5) holds true and hence completes the proof of Theo-
rem 5.7. ��

Now, we recall the concept of the anisotropic weight class of Muckenhoupt, asso-
ciated with a dilation A, which was introduced in [6, Definition 2.4].

Definition 5.10 Let A be a dilation, p ∈ [1,∞), and w be a nonnegative measurable
function on R

n . The function w is said to belong to the anisotropic weight class of
Muckenhoupt, Ap(A) := Ap(R

n, A), if there exists a positive constant C such that,
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when p ∈ (1,∞),

sup
x∈Rn

sup
k∈Z

{ 
x+Bk

w(y) dy

}{ 
x+Bk

[w(y)]−
1

p−1 dy

}p−1
≤ C

or, when p = 1,

sup
x∈Rn

sup
k∈Z

{ 
x+Bk

w(y) dy

}{
ess sup
y∈x+Bk

[w(y)]−1
}
≤ C .

Moreover, the minimal constants C as above are denoted by Cp,A,n(w).

It is easy to prove that, if 1 ≤ p ≤ q ≤ ∞, then Ap(A) ⊂ Aq(A). Let

A∞(A) :=
⋃

q∈[1,∞)

Aq(A).

For any given w ∈ A∞(A), define the critical index qw of w by setting

qw := inf
{
p ∈ [1,∞) : w ∈ Ap(A)

}
. (5.10)

Obviously, qw ∈ [1,∞). By the reverse Hölder inequality (see, for instance, [42,
Theorem 1.2]), we conclude that, for any p ∈ (1,∞) and w ∈ Ap(A), there exists
an ε ∈ (0, p − 1] such that w ∈ Ap−ε(A). Thus, if qw ∈ (1,∞), then w /∈ Aqw(A).
Moreover, Johnson and Neugebauer [46, p. 254] gave an example of w /∈ A1(A) with
A = 2In×n such that qw = 1.

In what follows, for any nonnegative local integrable function w and any Lebesgue
measurable set E , let

w(E) :=
ˆ
E

w(x) dx .

For any p ∈ (0,∞) and any nonnegative local integrable function w, denote by
L p

w(Rn) the set of all the measurable functions f on R
n such that

‖ f ‖L p
w(Rn) :=

{ˆ
Rn
| f (x)|pw(x) dx

} 1
p

< ∞.

Moreover, let L∞w (Rn) := L∞(Rn). Obviously, for any p ∈ (0,∞] and w ∈ A∞(A),
L p

w(Rn) is a ball quasi-Banach function space, which even may not be a quasi-Banach
function space (see, for instance, [69, p. 86]).

To showTheorem5.4,we need the following several technical lemmas. Lemma5.11
is a direct corollary of [85, Lemma 4.9] (see also [70, (4.6)]) because (Rn, ρ, dx) is a
special space of homogeneous type; Lemma 5.12 is similar to [4, p. 21, Theorem 4.5]
and we omit the details of its proof.
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Lemma 5.11 Let A, X, and θ0 be the same as in Theorem 5.4. Assume that x0 ∈ R
n.

Then there exists an ε ∈ (0, 1) such that X continuously embeds into Lθ0
w (Rn), where

w := [M(1x0+B0)]ε and B0 is the same as in (2.3) with k = 0.

Lemma 5.12 Let A and X be the same as in Theorem 5.4. Then H A
X (Rn) ⊂ S ′(Rn)

and the inclusion is continuous.

Combining Lemmas 5.11 and 5.12, we obtain the following property of H A
X (Rn).

Lemma 5.13 Let A and X be the same as in Theorem 5.4 and let f ∈ H A
X (Rn). Then

f vanishes weakly at infinity.

Proof Let N ∈ N be the same as in (3.1). By Lemma 5.12, we find that, for any k ∈ Z,
ϕ ∈ S(Rn), x ∈ R

n , and y ∈ x + Bk , | f ∗ ϕk(x)| � MN ( f )(y). Thus, there exists a
positive constant C1 such that, for any k ∈ Z, ϕ ∈ S(Rn), and x ∈ R

n ,

x + Bk ⊂
{
y ∈ R

n : MN ( f )(y) > C1| f ∗ ϕk(x)|
}
.

By this, Lemma 5.11, and the fact that w := [M(1x0+B0)]ε with ε ∈ (0, 1) is not
integrable on R

n , we conclude that, for any k ∈ Z, ϕ ∈ S(Rn), and x ∈ R
n ,

| f ∗ ϕk(x)| = [w(Bk)]−
1
θ0 [w(Bk)]

1
θ0 | f ∗ ϕk(x)|

≤ [w(Bk)]−
1
θ0
[
w
({
y ∈ R

n : MN ( f )(y) > C1| f ∗ ϕk(x)|
})] 1

θ0

× | f ∗ ϕk(x)|
� [w(Bk)]−

1
θ0 ‖MN ( f )‖

L
θ0
w (Rn)

� [w(Bk)]−
1
θ0 ‖MN ( f )‖X

= [w(Bk)]−
1
θ0 ‖ f ‖H A

X (Rn) → 0

as k →∞, which further implies that f vanishes weakly at infinity. This finishes the
proof of Lemma 5.13. ��

To show Theorem 5.4, we also need the following lemma whose proof is similar to
that of [57, Lemma 4.2]; we omit the details here.

Lemma 5.14 Let A, X, θ0, and p0 be the sameas inTheorem5.4, q ∈ (max{p0, 1},∞],
k0 ∈ Z, and ε ∈ (0,∞). Assume that {λi }i∈N ⊂ [0,∞), {B(i)}i∈N ⊂ B, and
{m(ε)

i }i∈N ⊂ Lq(Rn) satisfy that, for any ε ∈ (0,∞) and i ∈ N,

suppm(ε)
i :=

{
x ∈ R

n : m(ε)
i �= 0

}
⊂ Ak0B(i),

‖m(ε)
i ‖Lq (Rn) ≤ |B(i)| 1q

‖1B(i)‖X ,

and
∣∣∣∣∣∣

∣∣∣∣∣∣

{∑
i∈N

[
λi1B(i)

‖1B(i)‖X
]θ0

} 1
θ0

∣∣∣∣∣∣

∣∣∣∣∣∣
X

< ∞.
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Then

∣∣∣∣∣∣

∣∣∣∣∣∣
lim inf
ε→0+

[∑
i∈N

∣∣∣λim(ε)
i

∣∣∣θ0
] 1

θ0

∣∣∣∣∣∣

∣∣∣∣∣∣
X

≤ C

∣∣∣∣∣∣

∣∣∣∣∣∣

{∑
i∈N

[
λi1B(i)

‖1B(i)‖X
]θ0

} 1
θ0

∣∣∣∣∣∣

∣∣∣∣∣∣
X

,

where C is a positive constant independent of λi , B(i), m(ε)
i , and ε.

Now, we prove Theorem 5.4.

Proof of Theorem 5.4 Let τ be the same as in (2.5) and u and v the same as in
Lemma 5.8(iv). We first show the necessity of the present theorem. To this end, let
f ∈ H A

X (Rn). Then, by Lemma 5.13, we find that f vanishes weakly at infinity.
On the other hand, it follows from [84, Theorem 4.3] that there exists a sequence
{λi }i∈N ⊂ [0,∞) and a sequence {ai }i∈N of anisotropic (X , q, d)-atoms supported,
respectively, in {B(i)}i∈N ⊂ B such that

f =
∑
i∈N

λi ai in S ′ (Rn)

and

‖ f ‖H A
X (Rn) ∼

∥∥∥∥∥∥

{∑
i∈N

[
λi1B(i)

‖1B(i)‖X
]θ0

} 1
θ0

∥∥∥∥∥∥
X

.

Let a be an (X , q, d)-atom supported in a dyadic cube Q. Letw := u−v+2τ and, for
any j ∈ N, Uj := xQ + (Bv[�(Q)− j−1]+2τ\Bv[�(Q)− j]+2τ ). Then, by Lemma 5.8(iv),

we conclude that, for any x ∈ (AwQ)�, there exists some j0 ∈ N such that x ∈ Uj0 .
For this j0, choose an N ∈ N lager enough such that

(N − β)v j0 +
(
1

q
− β

)
u < 0,

where β := ( ln b
ln λ− + d + 1) ln λ−

ln b > 1
θ0
. By this and an argument similar to that used

in the proof of [64, (3.3)], we find that, for any x ∈ (AwQ)�,

S(a)(x) � bNv j0b−
v�(Q)

q ‖a‖Lq (Q).

From this, the size condition of a, and Lemma 5.8(iv), we deduce that, for any x ∈
(AwQ)�,

S(a)(x) � bNv j0b−
v�(Q)

q ‖1Q‖−1X
∣∣Bv�(Q)+u

∣∣ 1q

≤ b(N−β)v j0+( 1q−β)u‖1Q‖−1X
|Q|β

b[�(Q)− j0]vβ
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� ‖1Q‖−1X
[ |Q|
ρ(x − xQ)

]β

≤ ‖1Q‖−1X
[M(1Q)(x)

]β
.

Using this, we obtain, for any x ∈ R
n ,

S( f )(x) ≤
∑
i∈N

|λi | S(ai )(x)1AwB(i) (x)+
∑
i∈N

|λi | S(ai )(x)1(AwB(i))
�(x)

�
{∑
i∈N

[|λi | S(ai )(x)1AwB(i) (x)
]θ0
} 1

θ0

+
∑
i∈N

|λi |
‖1B(i)‖X

[M (
1B(i)

)
(x)

]β
. (5.11)

By (5.11), Assumptions 2.10 and 2.12, and an argument similar to that used in the
proof of [84, Theorem 4.3], we further conclude that

‖S( f )‖X � ‖ f ‖H A
X (Rn),

which completes the proof of the necessity of the present theorem.
Next, we show the sufficiency of the present theorem. Let ψ and φ be the same as

in Lemma 5.2 with d in (3.7), f vanish weakly at infinity, and ‖S( f )‖X < ∞. Then,
from Theorem 5.7, we infer that Sψ( f ) ∈ X . Thus, to show the sufficiency of the
present theorem, we need to prove that f ∈ H A

X (Rn) and

‖ f ‖H A
X (Rn) �

∥∥Sψ( f )
∥∥
X . (5.12)

To this end, for any k ∈ Z, let �k := {x ∈ R
n : Sψ( f )(x) > 2k} and

Qk :=
{
Q ∈ Q : |Q ∩�k | > |Q|

2
and |Q ∩�k+1| ≤ |Q|

2

}
.

Clearly, for any Q ∈ Q, there exists a unique k ∈ Z such that Q ∈ Qk . Let {Qk
i }i be

the set of all maximal dyadic cubes in Qk , that is, there exists no Q ∈ Qk such that
Qk

i � Q for any i . Observe that {Qk
i }i can be finite and at most countable and hence

we omit to indicate the range of i for the simplicity of the below presentation.
For any Q ∈ Q, let

Q̂ :=
{
(y, t) ∈ R

n+1+ : y ∈ Q,

bv�(Q)+u+τ ≤ t < bv[�(Q)−1]+u+τ
}

. (5.13)

Obviously, {Q̂}Q∈Q are mutually disjoint and

R
n+1+ =

⋃
k∈Z

⋃
i

Bk,i , (5.14)
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where, for any k ∈ Z and i, Bk,i := ⋃
Q⊂Qk

i ,Q∈Qk
Q̂. Then, by Lemma 5.8(ii) and

(5.13), we easily find that {Bk,i }k∈Z,i are also mutually disjoint.
On the other hand, ψ has the vanishing moments up to order d. From Lemma 3.7,

the properties of tempered distributions (see, for instance, [34, Theorem 2.3.20]), and
(5.14), we deduce that, for any f ∈ S ′(Rn) vanishing weakly at infinity and satisfying
‖S( f )‖X < ∞ and for any x ∈ R

n , we have

f (x) =
∑
k∈Z

f ∗ ψk ∗ φk(x)

=
ˆ

R
n+1+

( f ∗ ψt )(y)φt (x − y) dy dm(t) (5.15)

in S ′(Rn), where m(t) denotes the counting measure on R, that is, for any set E ⊂ R,
m(E) is the number of integers contained in E if E has only finitely many elements,
or else m(E) := ∞. For any k ∈ Z, i , and x ∈ R

n , let

hki (x) :=
ˆ
Bk,i

( f ∗ ψt )(y)φt (x − y) dy dm(t).

Next, we prove the sufficiency of the present theorem in three steps.
Step (I) The target of this step is to show that

∑
k∈Z

∑
i

hki converges in S ′
(
R
n) . (5.16)

To this end, following the proofs of assertions (i) and (ii) in the proof of the sufficiency
of [57, Theorem 3.4(i)] with some slightmodifications, we conclude that, for any given
q ∈ (max{p0, 1},∞),

(i) for any k ∈ Z, i , and x ∈ R
n ,

hki (x) =
∑

Q⊂Qk
i ,Q∈Qk

ˆ
Q̂
( f ∗ ψt )(y)φk(x − y) dy dm(t)

holds true in Lq (Rn) and hence also in S ′ (Rn);
(ii) for any k ∈ Z and i , hki = λki a

k
i is a multiple of an anisotropic (X , q, d)-atom,

where, for any k ∈Z and i ,λki ∼ 2k‖1Bk
i
‖X with the positive equivalence constants

independent of both k and i , and aki is an anisotropic (X , q, d)-atom satisfying,
for any q ∈ (max{p0, 1},∞), k ∈ Z, i , and γ ∈ Z

n+,

supp aki ⊂ Bk
i := xQk

i
+ Bv

[
�
(
Qk
i

)−1]+u+3τ ,

‖aki ‖Lq (Rn) ≤ ‖1Bk
i
‖−1X |Bk

i |
1
r , and

ˆ
Rn

aki (x)x
γ dx = 0.
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To show (5.16), we next consider two cases: i ∈ N and i ∈ {1, . . . , I } with some
I ∈ N.

Case 1 i ∈ N. In this case, to prove (5.16), by Lemma 5.12, it suffices to show that

lim
l→∞

∥∥∥∥∥∥
∑

l≤|k|≤m

∑
l≤i≤m

λki a
k
i

∥∥∥∥∥∥
H A
X (Rn)

= 0. (5.17)

Indeed, for any k ∈ Z and i ∈ N, by the estimate that
∣∣Qk

i ∩�k
∣∣ ≥

∣∣Qk
i

∣∣
2 , we find that,

for any x ∈ R
n ,

M
(
1Qk

i ∩�k

)
(x) �

 
Qk
i

1Qk
i ∩�k

(y) dy = |Qk
i ∩�k |
|Qk

i |
≥ 1

2
.

This, together with Assumption 2.10, further implies that, for any l,m ∈ N,

∥∥∥∥∥∥
∑

l≤|k|≤m

∑
l≤i≤m

(
2k1Bk

i

)θ0

∥∥∥∥∥∥

1
θ0

X
1
θ0

=

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

∑
l≤i≤m

2kθ0
(
1Bk

i

)2
⎤
⎦

1
2

∥∥∥∥∥∥∥

2
θ0

X
2
θ0

�

∥∥∥∥∥∥∥

⎧⎨
⎩

∑
l≤|k|≤m

∑
l≤i≤m

2kθ0
[
M

(
1Qk

i ∩�k

)]2
⎫⎬
⎭

1
2

∥∥∥∥∥∥∥

2
θ0

X
2
θ0

�

∥∥∥∥∥∥
∑

l≤|k|≤m

∑
l≤i≤m

(
2k1Qk

i ∩�k

)θ0

∥∥∥∥∥∥

1
θ0

X
1
θ0

. (5.18)

In addition, from the fact that, for any l,m ∈ N,
∑

l≤|k|≤m
∑

l≤i≤m λki a
k
i ∈ H A

X (Rn),
Lemma 3.12(i), and Definition 2.6(i), we deduce that

∥∥∥∥∥∥
∑

l≤|k|≤m

∑
l≤i≤m

λki a
k
i

∥∥∥∥∥∥
H A
X (Rn)

�

∥∥∥∥∥∥∥

⎧⎨
⎩

∑
l≤|k|≤m

∑
l≤i≤m

[
λki 1Bk

i

‖1Bk
i
‖X

]θ0
⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

∼

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

∑
l≤i≤m

(
2k1Bk

i

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥
X

=
∥∥∥∥∥∥
∑

l≤|k|≤m

∑
l≤i≤m

(
2k1Bk

i

)θ0

∥∥∥∥∥∥

1
θ0

X
1
θ0

. (5.19)
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On the other hand, it follows from Definition 2.4 that, for any l,m ∈ N,

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

(
2k1�k

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥

θ0

X

=

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

(
2k1�k\�k+1 + 2k1�k+1

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥

θ0

X

�

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

(
2k1�k\�k+1

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥

θ0

X

+
(
1

2

)θ0

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

(
2k+11�k+1

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥

θ0

X

.

Therefore, as l →∞, we have

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

(
2k1�k

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥
X

∼

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

(
2k1�k\�k+1

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥
X

. (5.20)

This, combined with (5.18) and (5.19), further implies that, as l →∞,

∥∥∥∥∥∥
∑

l≤|k|≤m

∑
l≤i≤m

λki a
k
i

∥∥∥∥∥∥
H A
X (Rn)

�

∥∥∥∥∥∥
∑

l≤|k|≤m

∑
l≤i≤m

(
2k1Qk

i ∩�k

)θ0

∥∥∥∥∥∥

1
θ0

X
1
θ0

�

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

(
2k1�k

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥
X

∼

∥∥∥∥∥∥∥

⎡
⎣ ∑
l≤|k|≤m

(
2k1�k\�k+1

)θ0

⎤
⎦

1
θ0

∥∥∥∥∥∥∥
X

≤

∥∥∥∥∥∥∥
Sψ( f )

⎛
⎝ ∑

l≤|k|≤m
1�k\�k+1

⎞
⎠

1
θ0

∥∥∥∥∥∥∥
X

→ 0.

Thus, (5.17) holds true and so (5.16) does in Case 1.
Case 2 i ∈ {1, . . . , I }with some I ∈ N. In this case, to show (5.16), byLemma5.12,

it suffices to prove that

lim
l→∞

∥∥∥∥∥∥
∑

l≤|k|≤m

I∑
i=1

λki a
k
i

∥∥∥∥∥∥
H A
X (Rn)

= 0. (5.21)
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Indeed, by a proof similar to that of (5.17), it is easy to show that (5.21) also holds
true. This finishes the proof of (5.16) in Case 2 and hence (5.16).

Step (II) In this step, we prove that

f =
∑
k∈Z

∑
i

λki a
k
i in S ′ (Rn) . (5.22)

To this end, for any x ∈ R
n , let

f̃ (x) :=
∑
k∈Z

∑
i

hki (x) =
∑
k∈Z

∑
i

ˆ
Bk,i

( f ∗ ψt )(y)φk(x − y) dy dm(t)

in S ′ (Rn), where, for any k ∈ Z and i, Bk,i is the same as in (5.14). Then, to show
(5.22), it suffices to prove that

f = f̃ in S ′ (Rn) . (5.23)

To this end, by the above assertion (i) and (5.13), we find that, for any given q ∈
(max{p0, 1},∞) and for any k ∈ Z, i , and x ∈ R

n ,

hki (x) = lim
N→∞

ˆ ∞

0

ˆ
Rn

( f ∗ ψt )(y)φk(x − y)

× 1⋃
Q⊂Qk

i ,Q∈Qk
|�(Q)|≤N

Q̂(y, t) dy dm(t)

= lim
N→∞

ˆ η(N )

γ (N )

ˆ
Rn

( f ∗ ψt )(y)φk(x − y)1Bk,i (y, t) dy dm(t) (5.24)

holds true in Lq (Rn) and also in S ′ (Rn), where, for any N ∈ N, γ (N ) := bvN+u+1
and η(N ) := b−v(N+1)+u+1. For the convenience of symbols, we rewrite f̃ as, for
any x ∈ R

n ,

f̃ (x) =
∑
�∈N

ˆ
R(�)

( f ∗ ψt )(y)φt (x − y) dy dm(t),

where {R(�)}�∈N is an arbitrary permutation of
{
Bk,i

}
k∈Z,i . For any L ∈ N and x ∈ R

n ,
let

f̃L(x) := f (x)−
L∑

�=1

ˆ
R(�)

( f ∗ ψt )(y)φt (x − y) dy dm(t).
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Then, from (5.14), (5.15), and (5.24), it follows that, for any L ∈ N and x ∈ R
n ,

f̃L(x) = lim
N→∞

ˆ η(N )

γ (N )

ˆ
Rn

( f ∗ ψt )(y)φt (x − y)1∪∞�=1R(�) (y, t) dy dm(t)

− lim
N→∞

ˆ η(N )

γ (N )

ˆ
Rn

( f ∗ ψt )(y)φt (x − y)1∪L
�=1R(�) (y, t) dy dm(t)

= lim
N→∞

ˆ η(N )

γ (N )

ˆ
Rn

( f ∗ ψt )(y)φt (x − y)1∪∞�=L+1R(�) (y, t) dy dm(t)

(5.25)

holds true in S ′ (Rn).
Note that H A

X (Rn) is continuously embedded into S ′ (Rn) (Lemma 5.12). Thus, to
prove (5.23), we only need to show that

∥∥ f̃L
∥∥
H A
X (Rn)

→ 0 as L →∞. (5.26)

To do this, we borrow some ideas from the proof of the atomic characterization of
H A
X (Rn) (see the proof of [84, Theorem 4.3]). Indeed, for any ε ∈ (0, 1), L ∈ N, and

x ∈ R
n , let

f̃ (ε)
L (x) :=

ˆ α/ε

ε

ˆ
Rn

( f ∗ ψt )(y)φt (x − y)1∪∞�=L+1R(�) (y, t) dy dm(t),

where α := b−v+2(u+1). Then, by the Lebesgue dominated convergence theorem, we
find that, for any ε ∈ (0, 1), L ∈ N, and x ∈ R

n ,

f̃ (ε)
L (x) =

∞∑
�=L+1

ˆ α/ε

ε

ˆ
Rn

( f ∗ ψt )(y)φt (x − y)1R(�) (y, t) dy dm(t)

=:
∞∑

�=L+1
h(ε)

� (x)

in S ′ (Rn). Moreover, by some arguments similar to those used in the proofs of asser-
tions (i) and (ii) in the proof of the sufficiency of [57, Theorem 3.4(i)] with some slight
modifications, we conclude that, for any ε ∈ (0, 1), q ∈ (max{p0, 1},∞), L ∈ N, and
� ∈ N ∩ [L + 1,∞), h(ε)

� is a multiple of an anisotropic (X , q, d)-atom, that is, there

exists a sequence {λ�}�∈N∩(L+1,∞) ⊂ [0,∞) and a sequence {a(ε)
� }�∈N∩(L+1,∞) of

anisotropic (X , q, d)-atoms supported, respectively, in {B(�)}�∈N∩(L+1,∞) ⊂ B such

that, for any � ∈ N∩[L+1,∞), h(ε)
� = λ�a

(ε)
� , where, for any � ∈ N∩[L+1,∞), λ�

and B(�) are independent of ε. Therefore, for any ε ∈ (0, 1), L ∈ N, and x ∈ R
n ,

f̃ (ε)
L (x) =

∞∑
�=L+1

λ�a
(ε)
� (x) in S ′ (Rn) (5.27)
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and ∥∥∥∥∥∥

{ ∞∑
�=L+1

[
λ�1B(�)

‖1B(�)‖X
]θ0

}1/θ0
∥∥∥∥∥∥
X

< ∞. (5.28)

On the other hand, for any given

N0 ∈ N ∩
[⌊(

1

θ0
− 1

)
ln b

ln λ−

⌋
+ 2,∞

)
,

let M0
N0

denote the anisotropic radial grand maximal function in Definition 5.1 with
N replaced by N0. Then, by the just proved conclusion that, for any ε ∈ (0, 1)
and L ∈ N, {a(ε)

� }�∈N∩(L+1,∞) is a sequence of anisotropic (X , q, d)-atoms and [84,
Lemma 4.7], we find that, for any � ∈ N ∩ [L + 1,∞) and x ∈ R

n ,

M0
N0

(
a(ε)
�

)
(x) � M0

N0

(
a(ε)
�

)
(x)1Aτ B(�) (x)+ 1

‖1B(�)‖X
[M (

1B(�)

)
(x)

]β
,

(5.29)

where β :=
(

ln b
ln λ− + d + 1

)
ln λ−
ln b > 1

θ0
. Moreover, since q > 1, then, from the

boundedness of M on Lq (Rn) (see [63, Lemma 3.3(ii)]), we deduce that, for any
ε ∈ (0, 1), L ∈ N, and � ∈ N ∩ [L + 1,∞),

∥∥∥M0
N0

(
a(ε)
�

)
1Aτ B(�)

∥∥∥
Lq (Rn)

�
∥∥∥M

(
a(ε)
�

)
1Aτ B(�)

∥∥∥
Lq (Rn)

� |B(�)|1/q
‖1B(�)‖X ,

which, combined with Lemma 5.14, further implies that

∥∥∥∥∥∥
lim inf
ε→0+

{ ∞∑
�=L+1

[
λ�M

0
N0

(
a(ε)
�

)
1Aτ B(�)

]θ0
}1/θ0

∥∥∥∥∥∥
X

�

∥∥∥∥∥∥

{ ∞∑
�=L+1

[
λ�1B(�)

‖1B(�)‖X
]θ0

}1/θ0
∥∥∥∥∥∥
X

. (5.30)

In addition, let ε := γ (N ) with N ∈ N ∩ [�−u−1
v
� + 1,∞). Then, by (5.25), we

obtain, for any x ∈ R
n ,

M0
N0

(
f̃L
)
(x) = M0

N0

(
lim

N→∞ f̃ (γ (N ))

L

)
(x)

= sup
ϕ∈SN (Rn)

sup
k∈Z

∣∣∣∣ limN→∞ f̃ (γ (N ))

L ∗ ϕk(x)

∣∣∣∣

≤ lim inf
N→∞ sup

ϕ∈SN (Rn)

sup
k∈Z

∣∣∣ f̃ (γ (N ))

L ∗ ϕk(x)
∣∣∣
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= lim inf
N→∞ M0

N0

(
f̃ (γ (N ))

L

)
.

From this, [4, p. 12, Proposition 3.10], (5.27), and (5.29), it follows that, for any L ∈ N,

∥∥ f̃L
∥∥
H A
X (Rn)

≤
∥∥∥∥lim inf

N→∞ M0
N0

(
f̃ (γ (N ))

L

)∥∥∥∥
X

≤
∥∥∥∥∥lim inf

N→∞

∞∑
�=L+1

λ�M
0
N0

(
a(γ (N ))

�

)∥∥∥∥∥
X

�
∥∥∥∥∥lim inf

N→∞

∞∑
�=L+1

λ�M
0
N0

(
a(γ (N ))

�

)
1Aτ B(�)

∥∥∥∥∥
X

+
∥∥∥∥∥

∞∑
�=L+1

λ�

‖1Aτ B(�)‖X
[M (

1B(�)

)]β
∥∥∥∥∥
X

.

This, together with (5.30), Lemma 3.8, Definition 2.4(ii), Assumption 2.10, and β >
1
θ0
, further implies that, for any L ∈ N,

∥∥ f̃L
∥∥
H A
X (Rn)

�

∥∥∥∥∥∥
lim inf
N→∞

{ ∞∑
�=L+1

[
λ�M

0
N0

(
a(γ (N ))

�

)
1Aτ B(�)

]θ0
} 1

θ0

∥∥∥∥∥∥
X

+
∥∥∥∥∥∥

{ ∞∑
�=L+1

λ�

‖1B(�)‖X
[M (

1B(�)

)]β
} 1

β

∥∥∥∥∥∥

β

Xβ

�

∥∥∥∥∥∥

{ ∞∑
�=L+1

[
λ�1B(�)

‖1B(�)‖X
]θ0

} 1
θ0

∥∥∥∥∥∥
X

.

By this and (5.28), we conclude that (5.26) holds true, which completes the proof of
(5.23) and hence (5.22).

Step (III) By (5.22), [84, Theorem 4.3], and some arguments similar to those used
in the estimations of both (5.18) and (5.20), we conclude that

‖ f ‖H A
X (Rn) ∼

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
k∈Z

∑
i

[
λki 1Bk

i

‖1Bk
i
‖X

]θ0
⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

=
∥∥∥∥∥∥

[∑
k∈Z

∑
i

(
2k1Bk

i

)θ0

] 1
θ0

∥∥∥∥∥∥
X

�
∥∥∥∥∥
∑
k∈Z

∑
i

(
2k1Qk

i ∩�k

)θ0

∥∥∥∥∥

1
θ0

X
1
θ0

≤
∥∥∥∥∥∥

[∑
k∈Z

(
2k1�k

)θ0

] 1
θ0

∥∥∥∥∥∥
X

∼
∥∥∥∥∥∥

[∑
k∈Z

(
2k1�k\�k+1

)θ0

] 1
θ0

∥∥∥∥∥∥
X

≤
∥∥∥∥∥∥
Sψ( f )

[∑
k∈Z

1�k\�k+1

] 1
θ0

∥∥∥∥∥∥
X
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= ∥∥Sψ( f )
∥∥
X ,

which further implies that f ∈ H A
X (Rn) and (5.12) holds true. This finishes the proof

the sufficiency and hence Theorem 5.4. ��
Now, we establish the anisotropic Littlewood–Paley g-function characterization of

H A
X (Rn). Recall that, for any given dilation A, φ ∈ S (Rn), t ∈ (0,∞), and j ∈ Z

and for any f ∈ S ′ (Rn), the anisotropic Peetre maximal function (φ∗j f )t is defined
by setting, for any x ∈ R

n ,

(φ∗j f )t (x) := ess sup
y∈Rn

|(φ− j ∗ f )(x + y)|
[1+ b jρ(y)]t

and the g-function associated with (φ∗j f )t is defined by setting, for any x ∈ R
n ,

gt,∗( f )(x) :=
⎧⎨
⎩
∑
j∈Z

[(
φ∗j f

)
t
(x)

]2
⎫⎬
⎭

1/2

.

To prove Theorem 5.5, we need the following estimate which is just [61, Lemma 3.6]
originated from [80, (2.66)].

Lemma 5.15 Let φ be the radial function in Lemma 5.2. Then, for any given N0 ∈ N

and γ ∈ (0,∞), there exists a positive constant C(N0,γ ), depending only on N0 and
γ , such that, for any t ∈ (0, N0), l ∈ Z, f ∈ S ′(Rn), and x ∈ R

n,

[(
φ∗l f

)
t (x)

]γ ≤ C(N0,γ )

∞∑
k=0

b−kN0γ bk+l
ˆ

Rn

|φ−(k+l) ∗ f (y)|γ
[1+ blρ(x − y)]tγ dy.

We now prove Theorem 5.5.

Proof of Theorem 5.5 First, let f ∈ H A
X (Rn). Then, by Lemma 5.13, we find that

f vanishes weakly at infinity. In addition, repeating the proof of the necessity of
Theorem 5.4 with some slight modifications, we easily find that g( f ) ∈ X and
‖g( f )‖X � ‖ f ‖H A

X (Rn). Thus, to prove the present theorem, by Theorem 5.4, we

only need to show that, for any f ∈ S ′(Rn) satisfying that f vanishes weakly at
infinity and g( f ) ∈ X ,

‖S( f )‖X � ‖g( f )‖X (5.31)

holds true. Notice that, for any f ∈ S ′(Rn) vanishing weakly at infinity, any t ∈
(0,∞), and almost every x ∈ R

n , S( f )(x) � gt,∗( f )(x). Thus, to show (5.31), it
suffices to prove that, for any f ∈ S ′(Rn) vanishing weakly at infinity,

∥∥gt,∗( f )
∥∥
X � ‖g( f )‖X (5.32)

holds true for some t ∈ (1/r+,∞) with r+ the same as in (5.4). Now, we show (5.32).
To this end, assume that φ ∈ S (Rn) is the radial function in Lemma 5.2. Obviously,
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t ∈ (1/r+,∞) implies that there exists a θ0 ∈ (0, r+) such that t ∈ (1/θ0,∞). Fix an
N0 ∈ (1/θ0,∞). By this, Lemma 5.15, and the Minkowski inequality, we find that,
for any x ∈ R

n ,

gt,∗( f )(x) =
{∑
k∈Z

[(
φ∗k f

)
t (x)

]2
} 1

2

�

⎡
⎢⎣
∑
k∈Z

⎧⎨
⎩
∑
j∈Z+

b− j N0r+b j+k
ˆ

Rn

|(φ−( j+k) ∗ f )(y)|r+
[1+ bkρ(x − y)]tr+ dy

⎫⎬
⎭

2
r+
⎤
⎥⎦

1
2

≤
⎧⎨
⎩
∑
j∈Z+

b− j(N0r+−1)

×
[∑
k∈Z

b
2k
r+
{ˆ

Rn

|(φ−( j+k) ∗ f )(y)|r+
[1+ bkρ(x − y)]tr+ dy

} 2
r+
] r+

2

⎫⎪⎬
⎪⎭

1
r+

,

which further implies that

∥∥gt,∗( f )
∥∥r+θ0
X �

∥∥∥∥∥∥
∑
j∈Z+

b− j(N0r+−1)

×
[∑
k∈Z

b
2k
r+
{ˆ

Rn

|(φ−( j+k) ∗ f )(y)|r+
[1+ bkρ(· − y)]tr+ dy

} 2
r+
] r+

2

∥∥∥∥∥∥∥

θ0

X
1
r+

≤
∑
j∈Z+

b− j(N0r+−1)θ0

∥∥∥∥∥∥∥∥

⎧⎪⎪⎨
⎪⎪⎩
∑
k∈Z

b
2k
r+

×
⎡
⎣
⎛
⎝
ˆ
{y∈Rn : ρ(·−y)<b−k}

+
∑
i∈Z+

b−i tr+
ˆ
{y∈Rn : bi−k−1<ρ(·−y)<bi−k}

⎞
⎠

× ∣∣(φ−( j+k) ∗ f
)
(y)

∣∣r+ dy

] 2
r+
⎫⎬
⎭

r+
2

∥∥∥∥∥∥∥

θ0

X
1
r+

≤
∑
j∈Z+

b− j(N0r+−1)θ0

∥∥∥∥∥∥∥∥

∑
k∈Z

b
2k
r+

⎧⎪⎪⎨
⎪⎪⎩
∑
i∈N

b−i tr+
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×
[ˆ
{y∈Rn : ρ(·−y)<b−k}

∣∣(φ−( j+k) ∗ f
)
(y)

∣∣r+ dy

] 2
r+
⎫⎬
⎭

r+
2
∥∥∥∥∥∥∥

θ0

X
1
r+

.

Then, from the Minkowski inequality again and Assumption 2.10, we further infer
that

∥∥gt,∗( f )
∥∥r+θ0
X �

∑
j∈Z+

b− j(N0r+−1)θ0
∥∥∥∥∥
∑
i∈N

b−i tr+
{∑
k∈Z

bk

×
[ˆ
{y∈Rn : ρ(·−y)<b−k}

∣∣(φ−( j+k) ∗ f
)
(y)

∣∣r+ dy

] 2
r+
⎫⎬
⎭

r+
2
∥∥∥∥∥∥∥

θ0

X
1
r+

≤
∑
j∈Z+

b− j(N0r+−1)θ0

×
∥∥∥∥∥∥
∑
i∈N

b(1−tr+)i

{∑
k∈Z

[M (∣∣φ−( j+k) ∗ f
∣∣r+)] 2

r+

} r+
2

∥∥∥∥∥∥

θ0

X
1
r+

�
∑
j∈Z+

b− j(N0r+−1)θ0 ∑
i∈N

b(1−tr+)iθ0

×
∥∥∥∥∥∥

{∑
k∈Z

[∣∣φ−( j+k) ∗ f
∣∣r+] 2

r+

} r+
2

∥∥∥∥∥∥

θ0

X
1
r+

∼ ‖g( f )‖r+θ0
X .

This further implies that (5.32) holds true and hence finishes the proof of Theorem 5.5.
��

Remark 5.16 (i) If A := 2 In×n , then Theorems 5.4, 5.5, and 5.6 were obtained in
[16, Theorems 4.9, 4.11, and 4.13] (see also [69, Theorem 3.21] and [82, Theorem
2.10]).

(ii) As was mentioned in Remark 3.17(ii), although (Rn, ρ, dx) is a space of homo-
geneous type, Theorems 5.4, 5.5, and 5.6 can not be deduced from [86, Theorems
4.11, 5.1, and 5.3] and, actually, they can not cover each other.

6 Carlesonmeasure characterization ofLA
X,1,d,�0

(Rn)

In this section, applying the results obtained in previous sections, we establish the
Carleson measure characterization of the anisotropic ball Campanato-type function
space LA

X ,1,d,θ0
(Rn). To this end, we first introduce the following anisotropic X-

Carleson measure.
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Definition 6.1 Let A be a dilation, X a ball quasi-Banach function space, and s ∈
(0,∞). A Borel measure dμ onR

n×Z is called an anisotropic X-Carlesonmeasure if

‖dμ‖A,s
X := sup

∥∥∥∥∥∥

{
m∑
i=1

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
m∑
j=1

{
λ j |B( j)| 12
‖1B( j)‖X

[ˆ
̂B( j)

|dμ(x, k)|
] 1

2
}

< ∞,

where the supremum is taken over all m ∈ N, {B( j)}mj=1 ⊂ B, and {λ j }mj=1 ⊂ (0,∞),

and, for any j ∈ {1, . . . ,m},̂B( j) denotes the tent over B( j), that is,

̂B( j) :=
{
(y, k) ∈ R

n × Z : y + Bk ⊂ B( j)
}

. (6.1)

For the anisotropic X -Carleson measure, we have the following equivalent charac-
terization.

Proposition 6.2 Let A be a dilation, X a ball quasi-Banach function space, dμ a Borel
measure on R

n × Z, s ∈ (0,∞), and

‖dμ‖A,s
X := sup

∥∥∥∥∥∥

{∑
i∈N

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

×
∑
j∈N

{
λ j |B( j)| 12
‖1B( j)‖X

[ˆ
̂B( j)

|dμ(x, k)|
] 1

2
}

,

where the supremum is taken over all {B( j)} j∈N ⊂ B and {λ j } j∈N ⊂ (0,∞) satisfying

∥∥∥∥∥∥

{∑
i∈N

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥
X

∈ (0,∞).

Then ‖dμ‖A,s
X = ‖dμ‖A,s

X .

Proof Let dμ be a Borel measure on R
n × Z. Obviously, ‖dμ‖A,s

X ≤ ‖dμ‖A,s
X . We

next show

‖dμ‖A,s
X ≤ ‖dμ‖A,s

X . (6.2)
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Indeed, for any {B( j)} j∈N ⊂ B and {λ j } j∈N ⊂ (0,∞) the same as in the present
proposition, by Definition 2.4(iii), we find that

lim
m→∞

∥∥∥∥∥∥

{
m∑
i=1

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

m∑
j=1

λ j |B( j)| 12
‖1B( j)‖X

[ˆ
̂B( j)

|dμ(x, k)|
] 1

2

=
∥∥∥∥∥∥

{∑
i∈N

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

∑
j∈N

λ j |B( j)| 12
‖1B( j)‖X

[ˆ
̂B( j)

|dμ(x, k)|
] 1

2

.

Therefore, for any ε ∈ (0,∞), there exists an m0 ∈ N such that
∑m0

j=1 λ j �= 0 and

∥∥∥∥∥∥

{∑
i∈N

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

∑
j∈N

λ j |B( j)| 12
‖1B( j)‖X

[ˆ
̂B( j)

|dμ(x, k)|
] 1

2

<

∥∥∥∥∥∥

{
m0∑
i=1

[
λi

‖1B(i)‖X
]s

1B(i)

} 1
s

∥∥∥∥∥∥

−1

X

m0∑
j=1

λ j |B( j)| 12
‖1B( j)‖X

[ˆ
̂B( j)

|dμ(x, k)|
] 1

2 + ε

≤ ‖dμ‖A,s
X + ε.

Combining this, the arbitrariness of both {B( j)} j∈N ⊂ B and {λ j } j∈N ⊂ (0,∞) as in
the present proposition, and ε ∈ (0,∞), we further obtain (6.2) and hence complete
the proof of Proposition 6.2. ��

In what follows, for any given k ∈ Z, define

δk( j) :=
{
1 when j = k,

0 when j �= k.

Next, we state the main theorem of this section as follows.

Theorem 6.3 Let A, X, d, and θ0 be the same as in Theorem 3.15, p0 ∈ (θ0, 2), and
φ ∈ S(Rn) be a radial real-valued function satisfying (5.1) and (5.2).

(i) If h ∈ LA
X ,1,d,θ0

(Rn), then, for any (x, k) ∈ R
n × Z, dμ(x, k) := ∑

�∈Z
|φ� ∗

h(x)|2dx δ�(k) is an X–Carleson measure on R
n × Z; moreover, there exists a

positive constant C, independent of h, such that

‖dμ‖A,θ0
X ≤ C‖h‖LA

X ,1,d,θ0
(Rn).

(ii) If h ∈ L2
loc(R

n) and, for any (x, k) ∈ R
n × Z, dμ(x, k) := ∑

�∈Z
|φ� ∗

h(x)|2dx δ�(k) is an X–Carleson measure on R
n × Z, then h ∈ LA

X ,1,d,θ0
(Rn)
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and, moreover, there exists a positive constant C, independent of h, such that

‖h‖LA
X ,1,d,θ0

(Rn) ≤ C ‖dμ‖A,θ0
X .

Remark 6.4 (i) Note that, if X is a concave ball quasi-Banach function space, then,
by Proposition 3.9, Theorem 6.3 gives the Carleson measure characterization of
LA
X ,1,d(R

n).
(ii) If A := 2 In×n , then Theorem 6.3 was obtained in [89, Theorem 5.3].

To proveTheorem6.3,we need the anisotropic tent space associatedwith ball quasi-
Banach function space and its atomic decomposition. We first recall the following
concept.

Definition 6.5 Let A be a dilation and, for any x ∈ R
n , let

�(x) := {(y, k) ∈ R
n × Z : y ∈ x + Bk},

which is called the cone of aperture 1 with vertex x ∈ R
n .

Let α ∈ (0,∞). For any measurable function F : R
n×Z → C and x ∈ R

n , define

A (F)(x) :=
[∑

�∈Z

b−�

ˆ
{y∈Rn : (y,�)∈�(x)}

|F(y, �)|2 dy
] 1

2

,

where �(x) is the same as in Definition 6.5. A measurable function F on R
n × Z is

said to belong to the anisotropic tent space T A,p
2 (Rn × Z), with p ∈ (0,∞), if

‖F‖
T A,p
2 (Rn×Z)

:= ‖A (F)‖L p(Rn) < ∞.

For any given ball quasi-Banach function space X , the anisotropic X -tent space
T A
X (Rn×Z) is defined to be the set of all themeasurable functions F onR

n×Z such that
A (F) ∈ X and naturally equipped with the quasi-norm ‖F‖T A

X (Rn×Z) := ‖A (F)‖X .
We next give the definition of anisotropic (TX , p)-atoms.

Definition 6.6 Let p ∈ (1,∞), A be a dilation, and X a ball quasi-Banach function
space. A measurable function a : R

n ×Z → C is called an anisotropic (TX , p)-atom
if there exists a ball B ⊂ B such that

(i) supp a := {(x, k) ∈ R
n ×Z : a(x, k) �= 0} ⊂ B̂, where B̂ is the same as in (6.1)

with B( j) replaced by B.
(ii) ‖a‖

T A,p
2 (Rn×Z)

≤ |B|1/p/‖1B‖X .
Moreover, if a is an anisotropic (TX , p)-atom for any p ∈ (1,∞), then a is called an
anisotropic (TX ,∞)-atom.

We have the following atomic decomposition on the anisotropic X -tent space
T A
X (Rn × Z).



   50 Page 54 of 71 C. Li et al.

Lemma 6.7 Let A, X, and θ0 be the same as in Definition 3.10 and F : R
n ×Z → C

a measurable function. If F ∈ T A
X (Rn × Z), then there exists a sequence {λ j } j∈N ⊂

[0,∞), a sequence {B( j)} j∈N ⊂ B, and a sequence {A j } j∈N of anisotropic (TX ,∞)-

atoms supported, respectively, in {̂B( j)} j∈N such that, for almost every (x, k) ∈ R
n×Z,

F(x, k) =
∑
j∈N

λ j A j (x, k), |F(x, k)| =
∑
j∈N

λ j |A j (x, k)|

pointwisely, and

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈N

(
λ j

‖1B( j)‖X
)θ0

1B( j)

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

� ‖F‖T A
X (Rn×Z), (6.3)

where the implicit positive constant is independent of F.

Proof For any j ∈ Z, let

Oj :=
{
x ∈ R

n : A (F)(x) > 2 j
}

,

Fj := (Oj )
�, and, for any given γ ∈ (0, 1),

(Oj )
∗
γ :=

{
x ∈ R

n :M(1Oj )(x) > 1− γ
}
.

Then, by an argument similar to that used in the proof of [28, (1.14)], we find that

supp F ⊂
⎡
⎣⋃

j∈Z

(̂Oj )∗γ ∪ E

⎤
⎦ ,

where E ⊂ R
n × Z satisfies that

∑
�∈Z

ˆ
{y∈Rn : (y,�)∈E}

dy = 0.

Moreover, applying [28, (1.15)],we conclude that, for any j ∈ Z, there exists an integer

N j ∈ N ∪ {∞}, {x ( j)
k }N j

k=1 ⊂ (Oj )
∗
γ , and {lk}N j

k=1 ⊂ Z such that {x ( j)
k + B( j)

lk
}N j
k=1 has

the finite intersection property and

(
Oj
)∗
γ
=

N j⋃
k=1

[
x ( j)
k + B( j)

lk

]

=
[
x ( j)
1 + B( j)

l1

]
∪
{[

x ( j)
2 + B( j)

l2

]
\
[
x ( j)
1 + B( j)

l1

]}
∪ · · ·
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∪
⎧⎨
⎩
[
x ( j)
N j
+ B( j)

lN j

]
\
N j−1⋃
i=1

[
x ( j)
i + B( j)

li

]
⎫⎬
⎭

=:
N j⋃
k=1

Bj,k . (6.4)

Notice that, for any j ∈ Z, {Bj,k}N j
k=1 aremutually disjoint. Thus, (̂Oj )∗γ =

⋃N j
k=1 B̂ j,k .

For any j ∈ Z and k ∈ {1, . . . , N j }, let

C j,k := B̂ j,k ∩
[
(̂Oj )∗γ \ ̂(Oj+1)∗γ

]
, A j,k := 2− j

∥∥∥∥1x ( j)
k +B( j)

lk

∥∥∥∥
−1

X
F1C j,k , (6.5)

and λ j,k := 2 j‖1
x ( j)
k +B( j)

lk

‖X . Therefore, from (6.4), it follows that

F =
∑
j∈Z

N j∑
k=1

λ j,k A j,k and |F | =
∑
j∈Z

N j∑
k=1

λ j,k
∣∣A j,k

∣∣

almost everywhere on R
n×Z. We now show that, for any j ∈ Z and k ∈ {1, . . . , N j },

A j,k is an anisotropic (T A
X ,∞)-atom supported in

̂
x ( j)
k + B( j)

lk
up to a harmless con-

stant multiple. Obviously,

supp A j,k ⊂ C j,k ⊂ B̂ j,k ⊂ ̂
x ( j)
k + B( j)

lk
.

In addition, let p ∈ (1,∞) and h ∈ T A,p′
2 (Rn × Z) satisfy ‖h‖

T A,p′
2 (Rn×Z)

≤ 1.

Notice that

C j,k ⊂ ̂(Oj+1)∗γ
� =

⋃

x∈(Oj+1)∗γ
�
�(x).

Applying this, [28, Lemma 1.3], the Hölder inequality, and (6.5), we find that

∣∣〈A j,k, h
〉∣∣ =

∣∣∣∣∣
∑
�∈Z

ˆ
Rn

A j,k(y, �)h(y, �)1C j,k (y, �) dy

∣∣∣∣∣

≤
∑
�∈Z

ˆ
(y,�)∈⋃

x∈(O j+1)∗γ � �(x)

∣∣A j,k(y, �)h(y, �)
∣∣ dy δi (�)

�
ˆ
(Oj+1)�

[∑
�∈Z

ˆ
{y∈Rn : (y,�)∈�(x)}

b−�
∣∣A j,k(y, �)h(y, �)

∣∣ dy
]
dx
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≤
ˆ
(Oj+1)�

A
(
A j,k

)
(x)A (h)(x) dx

≤
{ˆ

(Oj+1)�

[
A
(
A j,k

)
(x)

]p
dx

} 1
p
{ˆ

(Oj+1)�
[A (h)(x)]p′ dx

} 1
p′

≤ 2− j
∥∥∥∥1x ( j)

k +B( j)
lk

∥∥∥∥
−1

X

{ˆ
(x ( j)

k +B( j)
lk

)∩(Oj+1)�
[A (F)(x)]p dx

} 1
p

× ‖h‖
T A,p′
2 (Rn×Z)

�
|x ( j)

k + B( j)
lk
| 1p

‖1
x ( j)
k +B( j)

lk

‖X ,

which, combined with (T A,p
2 (Rn × Z))∗ = T A,p′

2 (Rn × Z) (see [22, Theorem 2]),
further implies that

∥∥A j,k
∥∥
T A,p
2 (Rn×Z)

�
|x ( j)

k + B( j)
lk
| 1p

‖1
x ( j)
k +B( j)

lk

‖X .

Using this, we find that, for any j ∈ Z and k ∈ {1, . . . , N j }, A j,k is an anisotropic
(T A

X , p)-atom up to a harmless constant multiple for any p ∈ (1,∞). Thus, for any
j ∈ Z and k ∈ {1, . . . , N j }, A j,k is an anisotropic (T A

X ,∞)-atom up to a harmless
constant multiple.

We next prove (6.3). To achieve this, from (6.4), the finite intersection property of

{x ( j)
k + B( j)

lk
}N j
k=1, the estimate that 1(Oj )

∗
γ

� [M(1Oj )]
1
θ0 , and Assumption 2.10, we

deduce that

∥∥∥∥∥∥∥∥

⎧⎪⎨
⎪⎩
∑
j∈Z

N j∑
k=1

⎡
⎣ λ j,k

‖1
x ( j)
k +B( j)

lk

‖X

⎤
⎦

θ0

1
x ( j)
k +B( j)

lk

⎫⎪⎬
⎪⎭

1
θ0

∥∥∥∥∥∥∥∥
X

=

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈Z

N j∑
k=1

[
2 j1

x ( j)
k +B( j)

lk

]θ0

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

�

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈Z

[
2 j1(Oj)

∗
γ

]θ0
⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

�

∥∥∥∥∥∥
∑
j∈Z

{
2 j [M (

1Oj

)] 1
θ0

}θ0

∥∥∥∥∥∥

1
θ0

X
1
θ0

�

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈Z

(
2 j1Oj

)θ0

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

∼

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈Z

(
2 j1Oj\Oj+1

)θ0

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X
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≤

∥∥∥∥∥∥∥
A (F)

⎡
⎣∑

j∈Z

1Oj\Oj+1

⎤
⎦

1
θ0

∥∥∥∥∥∥∥
X

= ‖A (F)‖X = ‖F‖T A
X (Rn×Z).

This further implies that (6.3) holds true and hence finishes the proof of Lemma 6.7.
��

We now prove Theorem 6.3.

Proof of Theorem 6.3 We first show (i). To this end, let h ∈ LA
X ,1,d,θ0

(Rn) and {x j +
Bl j }mj=1 ⊂ B with m ∈ N, {x j }mj=1 ⊂ R

n , and {l j }mj=1 ⊂ Z. Then we easily find that,
for any j ∈ {1, . . . ,m},

h = Pd
x j+Bl j

h +
(
h − Pd

x j+Bl j
h
)
1x j+Bl j+τ

+
(
h − Pd

x j+Bl j
h
)
1
(x j+Bl j+τ )�

=: h(1)
j + h(2)

j + h(3)
j , (6.6)

where τ is the same as in (2.5). Let j ∈ {1, . . . ,m}. For h(1)
j , by the fact that´

Rn φ(x)xα dx = 0 for any α ∈ Z
n+ with |α| ≤ d, we conclude that, for any k ∈ Z,

φk ∗ h(1)
j ≡ 0 and hence

∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

∣∣∣φk ∗ h(1)
j (x)

∣∣∣2 dx = 0. (6.7)

For h(2)
j , from the Tonelli theorem and the boundedness on L2(Rn) of the following

anisotropic g-function

g(h(2)
j ) :=

[∑
k∈Z

∣∣∣φk ∗ h(2)
j

∣∣∣2
] 1

2

(see, for instance, [39, Theorem 6.3]), we infer that

∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

∣∣∣φk ∗ h(2)
j (x)

∣∣∣2 dx

≤
ˆ

Rn

∑
k∈Z

∣∣∣φk ∗ h(2)
j (x)

∣∣∣2 dx �
∥∥∥h(2)

j

∥∥∥2
L2(Rn)

=
ˆ
x j+Bl j+τ

∣∣∣h(x)− Pd
x j+Bl j

h(x)
∣∣∣2 dx

≤
ˆ
x j+Bl j+τ

∣∣∣h(x)− Pd
x j+Bl j+τ

h(x)
∣∣∣2 dx

+
ˆ
x j+Bl j+τ

∣∣∣Pd
x j+Bl j+τ

h(x)− Pd
x j+Bl j

h(x)
∣∣∣2 dx . (6.8)
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In addition, using Lemma 3.14, we obtain, for any x ∈ x j + Bl j+τ ,

∣∣∣Pd
x j+Bl j+τ

h(x)− Pd
x j+Bl j

h(x)
∣∣∣

=
∣∣∣Pd

x j+Bl j+τ

(
h − Pd

x j+Bl j
h
)

(x)
∣∣∣

� 1

|x j + Bl j |
ˆ
x j+Bl j+τ

∣∣∣h(y)− Pd
x j+Bl j+τ

h(y)
∣∣∣ dy.

Thus, combining this with (6.8), Lemma 4.2, and Definition 2.4(ii), we find that, for
any m ∈ N, {x j + Bl j }mj=1 ⊂ B with both {x j }mj=1 ⊂ R

n and {l j }mj=1 ⊂ Z, and
{λ j }mj=1 ⊂ (0,∞),

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

m∑
j=1

λ j |x j + Bl j |
1
2

‖1x j+Bl j
‖X

×
[∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

∣∣∣φk ∗ h(2)
j (x)

∣∣∣2 dx

] 1
2

� J1

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli+τ
‖X

)θ0

1xi+Bli+τ

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

×
m∑
j=1

J ( j)
2

⎧⎨
⎩

[ˆ
x j+Bl j+τ

∣∣∣h(x)− Pd
x j+Bl j+τ

h(x)
∣∣∣2 dx

] 1
2

+ 1

|x j + Bl j |
1
2

ˆ
x j+Bl j+τ

∣∣∣h(x)− Pd
x j+Bl j+τ

h(x)
∣∣∣ dx

}

�

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli+τ
‖X

)θ0

1xi+Bli+τ

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

×
m∑
j=1

λ j |x j + Bl j+τ | 12
‖1x j+Bl j+τ

‖X

⎧⎨
⎩

[ˆ
x j+Bl j+τ

∣∣∣h(x)− Pd
x j+Bl j+τ

h(x)
∣∣∣2 dx

] 1
2

+ 1

|x j + Bl j |
1
2

ˆ
x j+Bl j+τ

∣∣∣h(x)− Pd
x j+Bl j+τ

h(x)
∣∣∣ dx

}

≤ ‖h‖LA
X ,2,d,θ0

(Rn) + ‖h‖LA
X ,1,d,θ0

(Rn),
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where

J1 :=
‖{∑m

i=1(
λi‖1xi+Bli+τ

‖X )θ01xi+Bli+τ
} 1

θ0 ‖X
‖{∑m

i=1(
λi‖1xi+Bli

‖X )θ01xi+Bli
} 1

θ0 ‖X

and, for any j ∈ {1, . . . ,m},

J ( j)
2 :=

‖1x j+Bl j+τ
‖X

‖1x j+Bl j
‖X

λ j |x j + Bl j+τ | 12
‖1x j+Bl j+τ

‖X .

This, combined with p0 ∈ (θ0, 2) and Corollary 3.16, further implies that

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

m∑
j=1

λ j |x j + Bl j |
1
2

‖1x j+Bl j
‖X

×
[∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

∣∣∣φk ∗ h(2)
j (x)

∣∣∣2 dx
] 1

2

� ‖h‖LA
X ,1,d,θ0

(Rn). (6.9)

Finally, we deal with h(3)
j . To do this, letting s ∈ (0, θ0) and ε ∈ ( ln b

ln(λ−)
[ 2s +

d ln(λ+)
ln b ],∞), we have, for any j ∈ {1, . . . ,m} and (x, k) ∈ ̂x j + Bl j ,

∣∣∣φk ∗ h(3)
j (x)

∣∣∣ �
ˆ

(x j+Bl j+τ )�

bεk
ln λ−
ln b

[bk + ρ(x − y)]1+ε
ln λ−
ln b

∣∣∣h(y)− Pd
x j+Bl j

h(y)
∣∣∣ dy

∼
ˆ

(x j+Bl j+τ )�

bεk
ln λ−
ln b

[bk + ρ(x j − y)]1+ε
ln λ−
ln b

∣∣∣h(y)− Pd
x j+Bl j

h(y)
∣∣∣ dy

≤ bεk
ln λ−
ln b

bεl j
ln λ−
ln b

ˆ
(x j+Bl j+τ )�

bεl j
ln λ−
ln b

[ρ(x j − y)]1+ε
ln λ−
ln b

∣∣∣h(y)− Pd
x j+Bl j

h(y)
∣∣∣ dy

� bεk
ln λ−
ln b

bεl j
ln λ−
ln b

ˆ
(x j+Bl j+τ )�

bεl j
ln λ−
ln b

bl j (1+ε
ln λ−
ln b ) + [ρ(x j − y)]1+ε

ln λ−
ln b

×
∣∣∣h(y)− Pd

x j+Bl j
h(y)

∣∣∣ dy.
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From this and Theorem 4.1, it follows that, for any m ∈ N, {x j + Bl j }mj=1 ⊂ B with
both {x j }mj=1 ⊂ R

n and {l j }mj=1 ⊂ Z, and {λ j }mj=1 ⊂ (0,∞),

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

m∑
j=1

λ j |x j + Bl j |
1
2

‖1x j+Bl j
‖X

×
[∑
k∈Z

ˆ
{x∈Rn :(x,k)∈x̂ j+Bl j }

∣∣∣φk ∗ h(3)
j (x)

∣∣∣2 dx

] 1
2

�

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

m∑
j=1

λ j |x j + Bl j |
‖1x j+Bl j

‖X

×
l j∑

k=−∞
b−(l j−k)ε ln λ−

ln b

ˆ
(x j+Bl j+τ )�

bεl j
ln λ−
ln b |h(x)− Pd

x j+Bl j
h(x)|

bl j (1+ε
ln λ−
ln b )+ [ρ(x j − x)]1+ε

ln λ−
ln b

dx

� ‖h‖LA,ε
X ,1,d,θ0

(Rn)
∼ ‖h‖LA

X ,1,d,θ0
(Rn).

Combining this, (6.6), (6.7), and (6.9), we conclude that

∥∥∥∥∥∥∥

⎧⎨
⎩

m∑
i=1

(
λi

‖1xi+Bli
‖X

)θ0

1xi+Bli

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥

−1

X

m∑
j=1

λ j |x j + Bl j |
1
2

‖1x j+Bl j
‖X

×
[∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

|φk ∗ h(x)|2 dx

] 1
2

� ‖h‖LA
X ,1,d,θ0

(Rn),

which, together with the arbitrariness of m ∈ N, {x j + Bl j }mj=1 ⊂ B with both
{x j }mj=1 ⊂ R

n and {l j }mj=1 ⊂ Z, and {λ j }mj=1 ⊂ (0,∞), further implies that, for any
(x, k) ∈ R

n × Z,

dμ(x, k) := |φk ∗ h(x)|2 dx

is an X–Carleson measure on R
n × Z. Moreover, there exists a positive constant C ,

independent of b, such that ‖dμ‖A,θ0
X � ‖h‖LA

X ,1,d,θ0
(Rn). This finishes the proof of (i).

We now prove (ii). To this end, let f ∈ H A,∞,d,θ0
X ,fin (Rn) with the quasi-norm greater

than zero. Then f ∈ L∞(Rn) with compact support. From this, the assumption that
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h ∈ L2
loc(R

n), and [28, (2.10)], it follows that

∣∣∣∣
ˆ

Rn
f (x)h(x) dx

∣∣∣∣ ∼
∣∣∣∣∣
∑
k∈Z

ˆ
Rn

φk ∗ f (x)φk ∗ h(x) dx

∣∣∣∣∣ . (6.10)

In addition, by the assumption that f ∈ H A
X (Rn) and Theorem 5.4, we find that

‖φk ∗ f ‖T A
X (Rn×Z) ∼ ‖ f ‖H A

X (Rn) < ∞,

which, combined with Lemma 6.7, further implies that there exists a sequence
{λ j } j∈N ⊂ (0,∞) and a sequence {A j } j∈N of anisotropic (T A

X ,∞)-atoms supported,

respectively, in { ̂x j + Bl j } j∈N with {x j + Bl j } j∈N ⊂ B such that, for almost every
(x, k) ∈ R

n × Z,

φk ∗ f (x) =
∑
j∈N

λ j A j (x, k)

and

0 <

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈N

(
λ j

‖1x j+Bl j
‖X

)θ0

1x j+Bl j

⎫⎬
⎭

1
θ0

∥∥∥∥∥∥∥
X

� ‖ f ‖H A
X (Rn).

From this, (6.10), the Hölder inequality, the size condition of A j , and the Tonelli
theorem, we infer that, for any f ∈ H A,∞,d

X ,fin (Rn),

∣∣∣∣
ˆ

Rn
f (x)h(x) dx

∣∣∣∣

�
∑
k∈Z

∑
j∈N

λ j

ˆ
Rn

∣∣A j (x, k)
∣∣ |φk ∗ h(x)| dx

≤
∑
j∈N

λ j

[∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

∣∣A j (x, k)
∣∣2 dx

] 1
2

×
[∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

|φk ∗ h(x)|2 dx

] 1
2

=
∑
j∈N

λ j

[∑
k∈Z

b−k
ˆ
{x∈Rn : (x,k)∈�(y)}

∣∣A j (x, k)
∣∣2 dx

ˆ
{y∈Rn : y∈x+Bk }

dy

] 1
2

×
[∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

|φk ∗ h(x)|2 dx

] 1
2
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=
∑
j∈N

λ j
∥∥A j

∥∥
T A,2
2 (Rn×Z)

[∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

|φk ∗ h(x)|2 dx

] 1
2

≤
∑
j∈N

λ j |x j + Bl j |
1
2

‖1x j+Bl j
‖X

[∑
k∈Z

ˆ
{x∈Rn : (x,k)∈x̂ j+Bl j }

|φk ∗ h(x)|2 dx

] 1
2

� ‖ f ‖H A
X (Rn)‖̃dμ‖A,θ0

X ,

which, together with Theorem 3.15, Proposition 6.2, and Corollary 3.16, further
implies that

‖h‖LA
X ,1,d,θ0

(Rn) � ‖dμ‖A,θ0
X .

This finishes the proof of (ii) and hence Theorem 6.3. ��

7 Several applications

In this section, we apply Theorems 3.15, 4.1, 4.3, 5.4, 5.5, 5.6, and 6.3 as well as Corol-
lary 3.16 to seven concrete examples of ball quasi-Banach function spaces, namely
Morrey spaces (see Sect. 7.1 below), Orlicz-slice spaces (see Sect. 7.2 below), Lorentz
spaces (see Sect. 7.3 below), variable Lebesgue spaces (see Sect. 7.4 below), mixed-
norm Lebesgue spaces (see Sect. 7.5 below), weighted Lebesgue spaces (see Sect. 7.6
below), and Orlicz spaces (see Sect. 7.7 below).

7.1 Morrey spaces

Recall that the classical Morrey space Mp
q (Rn) with 0 < q ≤ p < ∞, originally

introduced byMorrey [66] in 1938, plays a fundamental role in harmonic analysis and
partial differential equations. From then on, various variants of Morrey spaces over
different underlying spaces have been investigated and developed (see, for instance,
[17, 71]).

Definition 7.1 Let A be a dilation and 0 < q ≤ p < ∞. The anisotropic Morrey
space M p

q,A(Rn) is defined to be the set of all the measurable functions f on R
n such

that
‖ f ‖Mp

q,A(Rn) := sup
B∈B

[
|B| 1p− 1

q ‖ f ‖Lq (B)

]
< ∞,

where B is the same as in (2.4).

It is easy to show that Mp
q,A(Rn) is a ball quasi-Banach function space. From this

and [84, Remark 8.4], we deduce that Mp
q,A(Rn) satisfies both Assumptions 2.10

and 2.12 with X := Mp
q,A(Rn), p− ∈ (0, q], θ0 ∈ (0, p), and p0 ∈ (p,∞), where

p := min{p−, 1}. In what follows, we always let HM p
q,A(Rn) be the anisotropic
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Hardy–Morrey space which is defined to be the same as in Definition 3.1 with
X := Mp

q,A(Rn). Then, applying Theorems 5.4, 5.5, and 5.6, we obtain the following

characterizations of HM p
q,A(Rn), respectively, in terms of the anisotropic Lusin area

function, the anisotropicLittlewood–Paley g-function, and the anisotropicLittlewood–
Paley g∗λ-function.

Theorem 7.2 Let A be a dilation and 0 < q ≤ p < ∞. Then Theorems 5.4, 5.5,
and 5.6 with X := Mp

q,A(Rn) and λ ∈ (2/min{1, q},∞) hold true.

Remark 7.3 (i) We point out that Theorem 7.2 is completely new.
(ii) However, Theorems 3.15, 4.1, 4.3, and 6.3 as well as Corollary 3.16 can not be

applied to the anisotropic Morrey space Mp
q,A(Rn) because Mp

q,A(Rn) does not
have an absolutely continuous quasi-norm.

7.2 Orlicz-Slice spaces

Recently, Zhang et al. [92] originally introduced the Orlicz-slice space on R
n , which

generalizes both the slice space in [2] and the Wiener-amalgam space in [25]. They
also introduced the Orlicz-slice (local) Hardy spaces and developed a complete real-
variable theory of these spaces in [91, 92]. For more studies about Orlicz-slice spaces,
we refer the reader to [37, 38].

Recall that a function � : [0,∞) → [0,∞) is called an Orlicz function if it is
non-decreasing, �(0) = 0, �(t) > 0 for any t ∈ (0,∞), and limt→∞�(t) = ∞.
The function � is said to be of upper (resp. lower) type p for some p ∈ [0,∞) if
there exists a positive constant C such that, for any s ∈ [1,∞) (resp. s ∈ [0, 1]) and
t ∈ [0,∞), �(st) ≤ Cs p�(t). The Orlicz space L�(Rn) is defined to be the set of
all the measurable functions f on R

n such that

‖ f ‖L�(Rn) := inf

{
λ ∈ (0,∞) :

ˆ
Rn

�

( | f (x)|
λ

)
dx ≤ 1

}
< ∞.

Definition 7.4 Let A be a dilation, � ∈ Z, q ∈ (0,∞), and � be an Orlicz function.
The anisotropic Orlicz-slice space (Eq

�)�,A (Rn) is defined to be the set of all the
measurable functions f on R

n such that

‖ f ‖(Eq
�)�,A(Rn) :=

{ˆ
Rn

[‖ f 1x+B�
‖L�(Rn)

‖1x+B�
‖L�(Rn)

]q
dx

} 1
q

< ∞,

where B� is the same as in (2.3).

Let A be a dilation, � ∈ Z, q ∈ (0,∞), and � be an Orlicz function with pos-
itive lower type p−� and positive upper type p+�. Then, by the arguments similar to
those used in the proofs of [92, Lemmas 2.28 and 4.5], we find that (Eq

�)�,A (Rn) is a
ball quasi-Banach function space and has an absolutely continuous quasi-norm. From
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these and [84, Remark 8.14], we deduce that (Eq
�)�,A(Rn) satisfies both Assump-

tions 2.10 and 2.12 with X := (Eq
�)�,A(Rn), p− ∈ (0,min{p−�, q}], θ0 ∈ (0, p),

and p0 ∈ (max{p+�, q},∞), where p := min{p−, 1}. In what follows, we always

let (HEq
�)�,A(Rn) denote the anisotropic Orlicz-slice Hardy space which is defined

to be the same as in Definition 3.1 with X := (Eq
�)�,A(Rn). Moreover, by Theo-

rems 3.15, 4.1, 4.3, 5.4, 5.5, 5.6, and 6.3 as well as Corollary 3.16 with X replaced by
(Eq

�)�,A(Rn), we obtain the following conclusion.

Theorem 7.5 Let A be a dilation, � ∈ Z, q ∈ (0,∞), and � be an Orlicz function
with positive lower type p−�. Then

(i) Theorems 3.15, 4.1, 4.3, and 6.3 as well as Corollary 3.16with X := (Eq
�)�,A(Rn)

hold true;
(ii) Theorems 5.4, 5.5, and 5.6 with X := (Eq

�)�,A(Rn) and λ ∈ ( 2
min{1,p−�,q} ,∞) also

hold true.

Remark 7.6 We point out that Theorem 7.5 is completely new.

7.3 Lorentz spaces

Let p ∈ (0,∞] and q ∈ (0,∞]. Recall that the Lorentz space L p,q(Rn) is defined to
be the set of all the measurable functions f onR

n with the following finite quasi-norm

‖ f ‖L p,q (Rn) :=

⎧⎪⎪⎨
⎪⎪⎩

[
q

p

ˆ ∞

0

{
t
1
p f ∗(t)

}q dt

t

] 1
q

if q ∈ (0,∞),

sup
t∈(0,∞)

[
t
1
p f ∗(t)

]
if q = ∞

with the usual modification made when p = ∞, where f ∗ denotes the non-increasing
rearrangement of f , that is, for any t ∈ (0,∞),

f ∗(t) := {
α ∈ (0,∞) : d f (α) ≤ t

}

with d f (α) := |{x ∈ R
n : | f (x)| > α}| for any α ∈ (0,∞).

Then, by [85, Remarks 2.7(ii), 4.21(ii), and 6.8(iv)], we conclude that L p,q(Rn)

satisfies all the assumptions of Definition 3.1 with X := L p,q(Rn), p− ∈ (0, p],
θ0 ∈ (0, p), and p0 ∈ (p,∞), where p := min{p−, 1}, and that L p,q(Rn) has an

absolutely continuous quasi-norm. In what follows, we always let H p,q
A (Rn) be the

anisotropic Hardy–Lorentz space which is defined to be the same as in Definition 3.1
with X := L p,q(Rn). By Theorems 3.15, 4.1, 4.3, 5.4, 5.5, 5.6, and 6.3 as well as
Corollary 3.16 with X replaced by L p,q(Rn), we obtain the following conclusion.

Theorem 7.7 Let A be a dilation, p ∈ (0,∞), and q ∈ (0,∞]. Then
(i) Theorems 3.15, 4.1, 4.3, and 6.3 as well as Corollary 3.16 with X := L p,q(Rn)

hold true;
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(ii) Theorems 5.4, 5.5, and 5.6 with X := L p,q(Rn) and λ ∈ (2/min{1, p},∞) also
hold true.

Remark 7.8 Let p(·) ∈ C log(Rn) and q ∈ (0,∞), where C log(Rn) is the same as in
Sect. 7.4 below. We point out that Theorem 7.7(i) is a special case of [59, Theorems
1 and 2] with p(·) ≡ p ∈ (0,∞) therein and that Theorem 7.7(ii) improves the
corresponding results in [64, Theorems 2.7, 2.8, and 2.9] by widening the range of
p ∈ (0, 1] into p ∈ (0,∞). Although the variable Hardy–Lorentz space L p(·),q(Rn)

is also a ball quasi-Banach function space, [59, Theorems 1 and 2] can not be deduced
from Theorems 3.15 and 6.3. This is because the boundedness of the powered Hardy–
Littlewood maximal operator on the associate space of L p(·),q(Rn) is still unknown,
which makes it impossible to verify Assumption 2.12 with X := L p(·),q(Rn).

7.4 Variable Lebesgue spaces

Denote by P(Rn) the set of all the measurable functions p(·) on R
n satisfying

0 < p̃− := ess inf
x∈Rn

p(x) ≤ ess sup
x∈Rn

p(x) =: p̃+ < ∞. (7.1)

For any p(·) ∈ P(Rn), the variable Lebesgue space L p(·)(Rn) is defined to be the set
of all the measurable functions f on R

n such that

ˆ
Rn
| f (x)|p(x) dx < ∞,

equipped with the quasi-norm ‖ f ‖L p(·)(Rn) defined by setting

‖ f ‖L p(·)(Rn) := inf

{
λ ∈ (0,∞) :

ˆ
Rn

[ | f (x)|
λ

]p(x)

dx ≤ 1

}
.

Denote byC log(Rn) the set of all the functions p(·) ∈ P(Rn) satisfying the globally
log-Hölder continuous condition, that is, there exist Clog(p),C∞ ∈ (0,∞) and p∞ ∈
R such that, for any x, y ∈ R

n ,

|p(x)− p(y)| ≤ Clog(p)

log (e + 1/|x − y|)
and

|p(x)− p∞| ≤ C∞
log(e + ρ(x))

.

Let p(·) ∈ C log(Rn). Then, by [85, Remarks 2.7(iv), 4.21(v), and 6.8(vii)], we
conclude that L p(·)(Rn) satisfies all the assumptions of Definition 3.1 with X :=
L p(·)(Rn), p− := p̃−, θ0 ∈ (0, p̃), and p0 ∈ ( p̃+,∞], where p̃− and p̃+ are the same

as in (7.1) and p̃ := min{1, p̃−}, and that L p(·)(Rn) has an absolutely continuous
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quasi-norm. In what follows, we always let H p(·)
A (Rn) be the anisotropic variable

Hardy spacewhich is defined to be the same as in Definition 3.1 with X := L p(·)(Rn).
Moreover, by Theorems 3.15, 4.1, 4.3, 5.4, 5.5, 5.6, and 6.3 as well as Corollary 3.16
with X replaced by L p(·)(Rn), we obtain the following conclusion.

Theorem 7.9 Let A be a dilation and p(·) ∈ C log(Rn). Then

(i) Theorems 3.15, 4.1, 4.3, and 6.3 as well as Corollary 3.16 with X := L p(·)(Rn)

hold true;
(ii) Theorems 5.4, 5.5, and 5.6with X := L p(·)(Rn) and λ ∈ (2/min{1, p̃−},∞) also

hold true, where p̃− is the same as in (7.1).

Remark 7.10 We point out that Theorem 7.9(i) was also obtained in [40, Theorems 1,
2, and 3, and Corollary 1] and Theorem 7.9(ii) improves the corresponding results in
[60, Theorems 6.1, 6.2, and 6.3] by widening the range of λ ∈ (1+2/min{2, p̃−},∞)

into λ ∈ (2/min{1, p̃−},∞).

7.5 Mixed-norm Lebesgue spaces

Let �p := (p1, . . . , pn) ∈ (0,∞]n . Recall that themixed-normLebesgue space L �p(Rn)

is defined to be the set of all the measurable functions f on R
n such that

‖ f ‖L �p(Rn) :=
⎧⎨
⎩
ˆ

R

· · ·
[ˆ

R

{ˆ
R

| f (x1, . . . , xn)|p1 dx1
} p2

p1
dx2

] p3
p2

· · · dxn
⎫⎬
⎭

1
pn

is finite with the usual modifications made when pi = ∞ for some i ∈ {1, . . . , n}.
Let �p ∈ (0,∞]n . Then, by both [90, p. 2047] and [39, Lemmas 3.2 and 4.4],

we conclude that L �p(Rn) satisfies all the assumptions of Definition 3.1 with X :=
L �p(Rn), p− := p̂−, θ0 ∈ (0, p̂), and p0 ∈ (θ0,∞), where p̂− := min{p1, . . . , pn}
and p̂ := min{1, p̂−}, and that L �p(Rn) has an absolutely continuous quasi-norm.

In what follows, we always let H �p
A (Rn) be the anisotropic mixed-norm Hardy space

which is defined to be the same as in Definition 3.1 with X := L �p(Rn). Moreover,
by Theorems 3.15, 4.1, 4.3, 5.4, 5.5, 5.6, and 6.3 as well as Corollary 3.16 with X
replaced by L �p(Rn), we obtain the following conclusion.

Theorem 7.11 Let A be a dilation and �p ∈ (0,∞)n. Then

(i) Theorems 3.15, 4.1, 4.3, and 6.3 as well as Corollary 3.16with X := L �p(Rn) hold
true;

(ii) Theorems 5.4, 5.5, and 5.6 with X := L �p(Rn) and λ ∈ (2/min{1, p̂−},∞) also
hold true, where p̂− := min{p1, . . . , pn}.

Remark 7.12 (i) We point out that Theorem 7.11(i) was also obtained in [41, The-
orems 3.4, 4.1, and 5.3 and Corollary 3.9] and Theorem 7.11(ii) improves the
corresponding results in [39, Theorems 6.2, 6.3, and 6.4] by widening the range
of λ ∈ (1+ 2/min{2, p̂−},∞) into λ ∈ (2/min{1, p̂−},∞).
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(ii) Let �a := (a1, . . . , an) ∈ [1,∞]n . Then Theorem 7.11(i) with

A :=

⎛
⎜⎜⎜⎝

2a1 0 · · · 0
0 2a2 · · · 0
...

...
...

0 0 · · · 2an

⎞
⎟⎟⎟⎠

gives the dual space of the anisotropic mixed-norm Hardy space H �p
�a (Rn) which

was introduced in [19, Definition 3.3] and completely answers the open problem
on the dual space of H �p

�a (Rn) proposed in [19].

7.6 Weighted Lebesgue spaces

Let p ∈ (0,∞] andw ∈ A∞(A). From [85, Remarks 2.7(iii), 4.21(iii), and 6.8(v)], we
deduce that L p

w(Rn) satisfies all the assumptions of Definition 3.1 with X := L p
w(Rn),

p− ∈ (0, p/qw], θ0 ∈ (0,min{1, p−}), and p ∈ (θ0,∞), where qw is the same as in
(5.10), and that L p

w(Rn) has an absolutely continuous quasi-norm. In what follows, we
always let H p

w(Rn) be the anisotropic weighted Hardy spacewhich is defined to be the
same as in Definition 3.1 with X := L p

w(Rn). By Theorems 3.15, 4.1, 4.3, 5.4, 5.5, 5.6,
and 6.3 as well as Corollary 3.16 with X replaced by L p

w(Rn), we obtain the following
conclusion.

Theorem 7.13 Let A be a dilation, p ∈ (0,∞), and w ∈ A∞(A). Then

(i) Theorems 3.15, 4.1, 4.3, and 6.3 as well as Corollary 3.16 with X := L p
w(Rn)

hold true;
(ii) Theorems 5.4, 5.5, and 5.6 with X := L p

w(Rn) and λ ∈ (2/min{1, qw/p},∞)

also hold true, where qw is the same as in (5.10).

Remark 7.14 We point out that Theorem 7.13(i) is completely new and Theo-
rem 7.13(ii) improves the corresponding results in [49, Theorems 2.14, 3.1, and 3.9]
by widening the range of p ∈ (0, 1] into p ∈ (0,∞).

7.7 Orlicz spaces

Let � be an Orlicz function with positive lower type p−� and positive upper type
p+�. From [85, Remarks 2.7(iii), 4.21(iv), and 6.8(vi)], we deduce that L�(Rn) sat-
isfies all the assumptions of Definition 3.1 with X := L�(Rn), p− ∈ (0, p−�],
θ0 ∈ (0,min{p−�, 1}), and p0 ∈ (max{p+�, 1},∞), and that L�(Rn) has an absolutely
continuous quasi-norm. In what follows, we always let H�

A (Rn) be the anisotropic
Orlicz–Hardy space which is defined to be the same as in Definition 3.1 with
X := L�(Rn). Moreover, by Theorems 3.15, 4.1, 4.3, 5.4, 5.5, 5.6, and 6.3 as well as
Corollary 3.16 with X replaced by L�(Rn), we obtain the following conclusion.

Theorem 7.15 Let A be a dilation and � an Orlicz function with lower type p−� ∈
(0,∞). Then
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(i) Theorems 3.15, 4.1, 4.3, and 6.3 as well as Corollary 3.16 with X := L�(Rn)

hold true;
(ii) Theorems 5.4, 5.5, and 5.6 with X := L�(Rn) and λ ∈ (2/min{1, p−�},∞) also

hold true.

Remark 7.16 We point out that Theorem 7.15(i) is completely new and Theo-
rem 7.15(ii) improves the corresponding results in [49, Theorems 2.14, 3.1, and 3.9]
by widening the range of p−� ∈ (0, 1] into p−� ∈ (0,∞).
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